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ABSTRACT

The success of machine learning algorithms relies not only
on achieving good performance but also on ensuring trust-
worthiness across diverse applications and scenarios. Trust-
worthy machine learning seeks to handle critical problems
in addressing the issues of robustness, privacy, security, reli-
ability, and other desirable properties. The broad research
area has achieved remarkable advancement and brings var-
ious emerging topics along with the progress. We present
this survey to provide a systematic overview of the research
problems under trustworthy machine learning covering the
perspectives from data to model. Starting with fundamen-
tal data-centric learning, the survey reviews learning with
noisy data, long-tailed distribution, out-of-distribution data,
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and adversarial examples to achieve robustness. Delving
into private and secured learning, the survey elaborates on
core methodologies differential privacy, different attacking
threats, and learning paradigms, to realize privacy protection
and enhance security. Finally, it introduces several trendy
issues related to the foundation models, including jailbreak
prompts, watermarking, and hallucination, as well as causal
learning and reasoning. The survey integrates commonly
isolated research problems in a unified manner, which pro-
vides general problem setups, detailed sub-directions, and
further discussion on its challenges or future developments.
We hope the comprehensive investigation presented in this
survey can serve as a clear introduction for the problem
evolution from data to models and also bring new insight
for developing trustworthy machine learning.



1
Introduction

As artificial intelligence (AI) and machine learning (ML) experience
advancements rapidly, remarkable breakthroughs have been achieved
across a variety of scenarios and applications (Jordan and Mitchell, 2015).
These technologies of AI and ML have increasingly become cornerstones
of innovation, driving progress in the fields such as healthcare diag-
nostics (Alowais et al., 2023), autonomous vehicles (Betz et al., 2022),
financial modeling (Cao, 2022), protein structure prediction (Abramson
et al., 2024), and numerous other domains. Despite these impressive
achievements, the trustworthiness of AI systems has come under scrutiny,
particularly in security-critical and privacy-sensitive domains. Ensuring
that AI systems and ML models are reliable, secure, and trustworthy is
not merely desirable but essential for their deployment in large-scale
real-world applications.

The heart of machine learning is built upon two crucial aspects:
data and model. Data serves as the fundamental resource, representing
the diverse, complex, and often noisy real-world phenomena. Meanwhile,
the model functions as the learner, with specific model architectures
that absorb patterns and knowledge from the data, empowering it to
make predictions or decisions in previously unseen scenarios (LeCun
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et al., 2015). Notably, the emergence of data privacy and security issues
arises at the intersection of data and model, as training data may
inadvertently include malicious information that implants backdoors
in models (Li et al., 2022b), or contain sensitive privacy details that
models could unintentionally expose during inference (Liu et al., 2021a).
Overall, these challenges highlight the need to understand and develop
trustworthy machine learning from data to model, including perspectives
of data-centric methods, privacy and security, and foundation models.

In this monograph, we first discuss the trustworthy data-centric
learning, which emphasizes the risks associated with noisy (Song et al.,
2022a), long-tailed (Zhang et al., 2023e), out-of-distribution (Yang et
al., 2024), and adversarial data (Wang et al., 2019). As the foundation
of any ML models, the data directly impacts the model’s reliability
and generalization ability. Trustworthy data-centric learning focuses
on exploring the essential mechanisms by which data influences the
trustworthiness of ML models, and designing robust approaches to
adapt to, defend against, and mitigate the negative effects of such data
challenges. This includes developing robust algorithms for learning from
noisy data, handling long-tailed distributions, detecting and generalizing
across out-of-distribution data, and improving adversarial robustness
and defense strategies. Generally, the goal of trustworthy data-centric
learning is to ensure the trustworthiness of ML models from data
perspectives, enabling them to handle diverse and complex real-world
scenarios while maintaining highly accurate performance.

Privacy and security problems are paramount in the deployment
of machine learning models, particularly when dealing with sensitive
data (Liu et al., 2021a), such as finance and healthcare. In this mono-
graph, we delve deeply into the approaches that attacking and safe-
guarding ML systems, addressing challenges from both the data and
model perspectives. Specifically, we start with discussing differential
privacy (Abadi et al., 2016), a key technique that adds controlled noise
to protect privacy while maintaining data utility. We then review two
major privacy threats: membership inference attacks (Hu et al., 2022b)
and model inversion attacks (Song and Namiot, 2022), both of which at-
tempt to aim to leak information from the training data. Next, we cover
data poisoning attacks (Fan et al., 2022) that degrade the model perfor-
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mance by manipulating the training data. Additionally, we discuss three
types of promising approaches, including machine unlearning (Nguyen
et al., 2022), non-transfer learning (Niu et al., 2020) and federated
learning (Zhang et al., 2021a), all of which offer solutions to alleviate
these risks and enhance trustworthiness of models in defending against
such attacks. Overall, these research efforts highlight the vulnerabili-
ties of models and contribute to enhancing the robustness and privacy
protection.

Recently, the development of large foundation models, such as Chat-
GPT, Llama, and Gemini, has revolutionized the field of ML, paving
the pathway to artificial general intelligence (Zhou et al., 2024a). De-
spite their remarkable capacities, these foundation models still face
various safety concerns. In this monograph, we discuss several potential
risks and vulnerabilities of foundation models, aiming to highlight their
weaknesses and provide insights for constructing trustworthy founda-
tion models. In particular, we discuss jailbreak prompts that inveigle
foundation models to generate harmful content (Yi et al., 2024), and
then review watermarking techniques to ensure content provenance and
copyright (Liu et al., 2024a). We next introduce hallucination, which is
a critical issue for foundation models in generating unreliable and spu-
rious content (Rawte et al., 2023). Moreover, we discuss causal learning
and reasoning methods (Chi et al., 2024a) to enhance reliability of the
content generated by foundation models. Finally, we compare different
trustworthy concerns in open and proprietary foundation models with
their distinct properties. In short, this monograph provides a compre-
hensive review and discussion of the key challenges and advancements
in developing trustworthy machine learning systems, from data-centric
approaches, privacy and security concerns to foundation models.

Overview. The monograph is organized around core aspects of trust-
worthy machine learning from data to models, including data-centric
learning, private and secured learning, and foundation models.

• Trustworthy Data-centric Learning. First, we start with a
systematic review of trustworthy data-centric learning, covering
data-noise learning, long-tailed learning, out-of-distribution learn-
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ing, as well as adversarial examples and defense. These research
topics cover fundamental problems regarding data-level issues,
e.g., label noise, shifted distribution, outliers, and worst-case cor-
ruption. We further categorize specific research problems under
the general learning paradigms for discussion.

• Trustworthy Private and Secured Learning. Second, we fo-
cus on aspects of private and secured learning, covering differential
privacy, membership inference attack, model inversion attack, data
poisoning attack, machine unlearning, non-transferable learning,
and federated learning. Considering the trustworthy expectation
of privacy, security, and usage or ownership protection, we review
a series of critical technologies and research problems.

• Trustworthy Foundation Models. Finally, we explore building
the trustworthy foundation models, covering jailbreak prompts,
watermarking, hallucination, casual learning and reasoning, as
well as comparison on open and proprietary foundation models.
These research problems reveal the vulnerability of foundation
models in usage control and point the way to developing robust
and reliable model learning and reasoning.

In each part, we elaborate on the detailed problem setup and method-
ology or research directions, for which we conduct a further discussion
on promising future development in the problem. We hope this mono-
graph can provide a comprehensive investigation from data to models
in trustworthy machine learning and more new insights.

Target Audience and Reading Guidelines. This monograph is in-
tended for researchers, professionals, and graduate students working
in the fields of ML and AI. Some sections may contain technical de-
scriptions and discussions that assume a basic knowledge of core ML
concepts. Target readers are expected to have a foundational under-
standing of these key concepts, including supervised, semi-supervised
and unsupervised learning, optimization methods, representation learn-
ing, federated learning, among others. For undergraduate students or
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early-year graduate students new to the field, we recommend first refer-
ring to conventional textbooks on ML (Jordan and Mitchell, 2015) and
deep learning (LeCun et al., 2015) before delving into the specialized
topics covered in this monograph. Additionally, readers unfamiliar with
trustworthy ML may benefit from the monograph to establish a solid
background of key challenges, methodologies, and emerging research
directions in the field. Each section is organized to offer a thorough
review and perceptive discussions of its respective topic. This struc-
ture makes the monograph suitable for both newcomers looking for a
thorough grasp of trustworthy ML and seasoned researchers hoping to
further advance the field. We hope this monograph serves as a valuable
resource for a broad audience interested in developing more trustworthy
and reliable ML systems.

Discussion on the Topic Coverage. In this monograph, our primary
focus is on the critical technical aspects of trustworthy machine learn-
ing, specifically addressing issues of robustness, privacy, security, and
reliability. Our goal is to provide a systematic overview of the evolv-
ing research landscape from a data-centric perspective, and consider
the privacy and security challenges to building trustworthy founda-
tion models. The overall discussion is with a particular emphasis on
data quality, privacy protection, and security challenges. However, we
should acknowledge that we don’t explicitly cover all the topics that are
also important and highly relevant to the field of trustworthy machine
learning, such as fairness and bias (Mehrabi et al., 2021; Pessach and
Shmueli, 2022), ethics (Chen et al., 2021a; Holmes et al., 2022), and
explainability (Došilović et al., 2018; Murdoch et al., 2019). For instance,
ML systems can often mirror and amplify biases present in their training
data and reflect stereotypes in their outputs, causing a broader concern
of algorithm discrimination. In essence, without properly examining the
training data, the training stage of the model would reinforce historical
or societal prejudices that favor or over-present dominant groups and
under-present or mischaracterize minorities.

Moreover, the non-transparency property of ML models increases
the difficulty of effective auditing for untrustworthy issues. We do not ex-
plicitly discuss fairness and bias, ethics, or interpretability in separated
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sections because these issues often require a distinct and deep dive into
the societal and moral implications of technologies. However, we recog-
nize the strong connections between these research topics and the core
themes of our content. For example, issues of fairness and bias are often
intertwined with the robustness considerations discussed in the context
of adversarial examples and noisy data, as biased data can lead to unfair
and unreliable model outcomes. Similarly, the methodologies explored
for privacy protection, such as differential privacy, can contribute to
ethical practices by safeguarding sensitive information and ensuring
compliance with ethical standards in data handling. Finally, the discus-
sion on casual learning and reasoning for trustworthy foundation models
also touches on explainability in the sense that building reliable models
often requires transparent and understandable methodologies. We hope
this work will complement existing literature and encourage further
exploration of these important areas within the context of trustworthy
machine learning.



2
Trustworthy Data-centric Learning

Models are trained using data, which serves as the foundation for
their learning and performance. The quality and distribution of this
data play a pivotal role in determining the effectiveness of machine
learning systems. This is where the data-centric approach comes into
play, shifting the focus from optimizing model architectures to ensuring
the integrity and reliability of the data itself. By emphasizing the
importance of data quality, fairness, and robustness, the data-centric
paradigm seeks to build more trustworthy, transparent, and reliable
AI systems. Trustworthy data-centric learning involves addressing key
dimensions such as data quality, fairness, transparency, and robustness.
It tackles challenges like noise in data, long-tailed distributions, shifts in
data distributions, and vulnerabilities to adversarial attacks, all while
upholding stringent standards for data curation and validation.

This section provides a cohesive exploration of four critical aspects
in data-level that can undermine the reliability of modern machine
learning systems. First, Section 2.1 examines how various forms of noisy
data—such as correspondence noise, graph noise, and group-structured
noise—can affect model performance. These noise-handling paradigms
lay the groundwork for understanding broader data imperfections, set-
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ting the stage for subsequent sections. Building on this discussion of
imperfect data, Section 2.2 shifts the focus to long-tailed distribu-
tions. While noise presents one source of difficulty for learning, heavily
skewed class distributions pose another significant challenge from an
optimization perspective. The methods introduced here—ranging from
supervised to weakly-supervised and self-supervised strategies—benefit
from the insights gained in the previous part regarding robust model
training under imperfect conditions. Extending beyond issues of la-
bel noise and imbalance, Section 2.3 addresses the problem of out-of-
distribution detection and generalization. The techniques presented here
are complementary to those in noisy and imbalance learning, collec-
tively emphasizing the importance of robust feature representations and
adaptable optimization strategies. Finally, Section 2.4 highlights the
ultimate test of adversarial attacks. These attacks exploit vulnerabilities
often revealed by the same factors—noise, imbalance, and distributional
shifts—discussed in the earlier sections. By examining adversarial ex-
amples and related defense mechanisms, this last section rounds out
the section’s coverage of strategies for building truly robust machine
learning models.

2.1 Data-noise Learning

Data-noise learning considers scenarios in which some of the supervision
signals used during training are incorrect. This challenge is prevalent
in practical applications; even meticulously conducted manual annota-
tions can result in a significant number of errors. In this section, we
explore various types of data-noise setups, including correspondence
noise learning, graph-noise learning, and group-structured noise learning.
These categories reflect the key paradigms for data-noise learning, as
illustrated in Figure 2.1.

Overall, correspondence noise learning focuses on the mismatches
between data pairs or wrong correspondence across different modalities.
Graph-noise learning examines errors within graph neural networks,
which may involve incorrect relational data or mislabeled nodes. Group-
structured noise learning encompasses scenarios where noise affects a
group of instances or labels, including multiple-instance learning, partial
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Data-noise Learning

Correspondence Pre-train

Robust Loss Correction

Memorization Effect

Correspondence Noise 
Learning

Graph-noise Learning Group-structured Noise 
Learning

Node-level Label Correction

Partial Label Learning

Group Noise Learning

Multiple-instance Learning

Node-contrasted Data 
Reprocessing

Noise-resistant 
Structural Analysis

Figure 2.1: The overall framework for data-noise learning.

label learning, and group noise learning. These learning paradigms
represent the cutting edge of settings for data-noise learning, offering a
comprehensive overview for the current progress in the literature.

2.1.1 Correspondence Noise Learning

While the issue of learning with noisy data has been extensively studied
in the context of unimodal learning (Han et al., 2018b; Han et al., 2018a;
Li et al., 2020b; Liu et al., 2020c), it remains relatively under-explored
in the domain of multimodal learning. Different from unimodal settings
where noisy label serving as a primary concern, real-world multimodal
datasets which contain non-expert annotations or collected by web crawl-
ing are prone to a specific challenge known as the noisy correspondence
problem. Noisy correspondence refers to the mismatches in cross-modal
data pairs, of which the discrepancy can lead to severe degradation on
performance of downstream tasks like cross-modal retrieval (Zhen et al.,
2019; Diao et al., 2021) and vision-language pre-training (Radford et al.,
2021a; Li et al., 2022a; Liu et al., 2024f). To intuitively present the
correspondence noise learning, we illustrate the problem comparison in
Figure 2.2.

Problem Setup. Consider a multimodal dataset D = {xi
1, xi

2, c}N
i=1,

where xi
1 and xi

2 represents separate modalities from the i-th multimodal
sample pair. Standard multimodal frameworks including SGRAF (Diao
et al., 2021) and CLIP (Radford et al., 2021a), aim to project these
data pairs into a shared representation space using separate encoders
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x1x1

x2x2

Encoder ff

Encoder gg

x1x1

x2x2

Contrastive Loss yy

x1x1

x2x2

Encoder ff

Encoder gg

x1x1

x2x2

Contrastive Loss cc

xx Encoder ff xx yy

Learning from noisy labels Learning from noisy correspondence

xx x1x1 x2x2/ : Single/Multimodal Data Input

/ : Single/Multimodal Representationx1x1

xx

xx x2x2

ccyy : Single Modal Label : Noisy Correspondence Label

Figure 2.2: Problem setting of correspondence noise learning compared to learning
from noisy labels. Standard framework includes separate encoders f and g extracting
modality features into representations. Label c indicates the correspondence relation,
which can be noisy given by the dataset.

f for input x1 and g for input x2. Then, similarity scores between the
representations are computed through cosine similarity or an inference
model, denoting as S(f(x1), g(x2)). The associated label ci indicates
whether the pair is positively correlated (ci = 1) or not (ci = 0), which
may contain incorrect annotations when the pairs are noisily matched.

Memorization-effect-driven Methods. The noisy correspon-
dence problem was first aroused by NCR (Huang et al., 2021b), which
explores to leverage the memorization effect1 in deep learning to help
distinguish samples with noisy correspondence. However, due to the
distinct training paradigm in multimodal learning and the additional
complexity of noisy correspondence, uni-modal robust methods can
hardly be applied directly. To address this, NCR combines the Di-
videMix (Li et al., 2020b) framework with unsupervised contrastive
multimodal training. Specifically, NCR splits the training data into
clean and noisy subsets through a two-component Gaussian Mixture
Model (GMM), in which the clean subset can be directly learned, while
the noisy one is adaptively optimized by estimating a soft margin for
the triplet loss, which is further stabilized by introducing dual networks
in a co-training curriculum.

1The memorization effect refers to that deep neural networks tend to initially
learn the clean patterns within the dataset before over-fitting on noise, which has
long been extensively studied in learning from noisy labels (Li et al., 2020b; Liu
et al., 2020c; Liu et al., 2022b).
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Although NCR provides a well-established paradigm for learning
from noisy correspondence, it still achieves unsatisfactory accuracy in
distinguishing noisy samples. BiCro (Yang et al., 2023a) improves upon
NCR by adopting a Beta Mixture Model and estimating soft correspon-
dence labels by sample-wise comparison. MSCN (Han et al., 2023b)
introduces a meta similarity correction network that reinterprets the
binary classification of correspondence as a meta process, enhancing the
data purification process. CTPR (Feng et al., 2023) refines the original
GMM by incorporating three components, which helps identify chal-
lenging samples that are beneficial for multimodal contrastive learning.
CREAM (Ma et al., 2024) further advances this approach by employing
a collaborative learning paradigm to detect positive samples with a
negative mining approach to maintain consistency.

However, the above methods all depend on the DivideMix framework,
which exhibits high training costs and limited effectiveness in addressing
real-world noisy correspondence issues. Besides, real-world noisy corre-
spondences are often caused by lopsided observations, where data pairs
from separate modalities are frequently merely partially mismatched.
Such discrepancy can hardly be captured and split by simply fitting
Gaussian distributions to the training losses. To address this, ACL (Qin
et al., 2023) proposed an active complementary loss and a self-refining
correspondence correction mechanism to enhance robustness and reduce
error accumulation. GSC (Zhao et al., 2024c) explored the structural
differences from both cross-modal and intra-modal aspects to accurately
predict true correspondence labels and counteract the adverse effects of
noisy correspondences. It incorporates a temporal ensembling strategy,
ensuring stable performance with both single and dual networks.

Robust-loss-based Methods. In addition to leveraging the mem-
orization effect, another line of works introduce robust loss functions
to mitigate noisy correspondences with lower computational costs.
RINCE (Chuang et al., 2022) proposed a robust symmetric losses
for combating noisy views in binary classification tasks. DECL (Qin
et al., 2022) combined the concept of evidential learning with noisy
correspondence and puts forward a confidence-based method. RCL (Hu
et al., 2023) adopted a complementary contrastive learning paradigm
to address both problems of overfitting issues on partially mismatched
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pairs and under-fitting in weakly supervision settings. In the context
of video-language pre-training, video clips are often split into frames
and aligned with synchronized subtitles for computational efficiency.
However, dividing videos into short clips would inevitably lead to tem-
poral misalignment between subtitles and visual clips. In this scenario,
Norton (Lin et al., 2024c) proposed a video-paragraph and a clip-caption
contrastive loss based on optimal transport (OT), which explores tempo-
ral correlations between video and text. Similarly, the OT principle can
also be used to solve the partially mismatched pairs problem. For exam-
ple, L2RM (Han et al., 2024) proposed generating refined alignments
by finding a minimal-cost transport plan across modalities.

Noisy Correspondence in LVLM Pre-training. Learning from
noisy correspondence is a relatively new issue in the field of data-noise
learning, but it has emerged as a promising research direction in real-
world applications. With the success of Large Vision-Language Models
(LVLMs), the pre-training of such models relies on vast amounts of
paired vision-language data, which are often collected through web
crawling and can contain noisy correspondences. For example, the
popular CC3M dataset (Sharma et al., 2018) was filtered from a 5-
billion collection, and yet was noted to contain noisy correspondence
in 3% to 20% of the data pairs. This phenomenon highlights that
noisy correspondence learning has a wide range of application scenarios.
For instance, CLIPScore (Hessel et al., 2021) discovered that the pre-
trained CLIP could be utilized for robust automatic evaluation of
image captioning without reference captions, enabling the filtering of
multimodal data. BLIP (Li et al., 2022a) introduced a CapFilt module
pre-trained on clean dataset to identify and refine low-quality data for
pre-training. NLIP (Huang et al., 2023a) estimated the noise probability
of each pair based on the memorization effect and incorporated a concept-
conditioned cross-modal decoder to generate complete captions for noisy
samples. NEVER (Huang et al., 2024e) explored to first split original
dataset into clean and noisy subsets, and then employed the positive
and negative learning strategies to enhance the model convergence and
the noise robustness.

Further Discussion. Learning from noisy correspondence contin-
ues to evolve, but several challenges remain unresolved. First, many
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modern robust methods rely on the memorization effect to distinguish
noisy samples during the early stages of training. However, this strategy
demonstrates limited effectiveness in real-world scenarios. In practice,
real-world noisy correspondences are often more complex and harder to
distinguish from challenging samples (Li et al., 2022a). Second, current
robust methods typically require high computational costs, which be-
come unaffordable when training large models on large-scale datasets.
Most existing approaches rely on a dual-network co-training framework,
which doubles the training costs. Lastly, unlike unimodal learning, mul-
timodal methods face unique challenges, such as modality asymmetry
and missing modalities (Zhang et al., 2022g; Chen et al., 2023a). These
issues complicate learning from noisy correspondences and demand new
strategies specifically designed to address multimodal difficulties. With
the rapid growth of deep neural networks and large vision-language
models, future strategies for handling noisy correspondences should be
designed in pace with LVLMs to address these challenges more efficiently.
Furthermore, the development of noisy correspondence robust methods
may facilitate better high-quality data selection for foundation model
pre-training and fine-tuning.

2.1.2 Graph-Noise Learning

Graph-noise learning has emerged as a significant focus of study in the
field of graph neural networks (GNNs). It largely tackles the problems
of label noise, which can significantly influence GNN performance in
realistic applications (NT et al., 2019; Dai et al., 2021; Wang et al.,
2024e). The purpose of this concept is to enhance the robustness of
GNN in the face of noisy labels, which are often presented in a large
number of datasets as a result of adversarial attacks or erroneous data
sources (Wang et al., 2024e). These initiatives are particularly crucial
because the quality of node labels is under threat in many fields such
as bioinformatics, knowledge graphs, social networks, and recommender
systems (NT et al., 2019; Dai et al., 2021; Wang et al., 2024e).

Problem Setup. Research has indicated that adding loss correction
methods to GNN training processes can improve test accuracy under
synthetic symmetric label noise settings (Dai et al., 2021). Given a
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graph G = (V, E), where V is the set of nodes, E is the set of edges,
A ∈ RN×N is the adjacency matrix, and X ∈ RN×d denotes the node
features. Let Ynoise represent a small set of nodes Vnoise ∈ V with noisy
labels. As shown in Figure 2.3, the goal is to train a GNN classifier fθ

to predict the labels Ypred of the unlabeled nodes: fθ(G, Ynoise) → Ypred.

Graph Node Classification under Label Noise

Correct LabelNoisy Label Unlabeled nodes

Figure 2.3: A demonstration of the graph noisy label problem.

Node-level Label Correction are crucial for enhancing the per-
formance of GNNs. A prevalent method is label propagation, which
has shown considerable efficacy in mitigating label noise, especially in
graphs characterized by heterophily and elevated label noise (Cheng
et al., 2024a). Recent research has reinvigorated label propagation ap-
proaches to address these specific difficulties, using their ability to
propagate labels throughout the graph structure to reduce noise and
enhance accuracy (Cheng et al., 2024b).

Robust heterophilic graph learning approaches have been devised
to combat label noise, especially in anomaly detection applications.
These techniques are centered on producing consistent representations
even in noisy environments, which ultimately increases the durability
of GNNs in noisy environments (Wu et al., 2024). UnionNET (Li et al.,
2021c) attempts to prevent gradient passage of mislabeled samples using
neighborhood labeling, such as node representation similarity weighted
neighborhood voting. RNCGLN (Zhu et al., 2024b) use pseudo graphs
and pseudo labels to handle graph and label noise. CLNode (Wei et
al., 2023b) implements a curricular learning technique to alleviate the
effects of label noise. CLNode first uses a multi-perspective difficulty
assessor to evaluate the quality of training nodes accurately. Subse-
quently, a training scheduler will be employed to determine appropriate
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training nodes for GNN training in each epoch based on the evaluated
qualities.

Node-contrasted Data Reprocessing is crucial for minimizing
the effects of label noise in graph datasets. Maintaining the accuracy
and robustness of GNNs under noisy labeling depends on using efficient
preprocessing techniques. The robustness of the model is enhanced by
contrasting learning methods, which concentrate on data point similari-
ties and contrasts. Under label noise, this concentration helps to extract
important representations. Li et al. (2024d) learns under the expected
label distribution’s supervision, boosting the generalizing capacity of
text classification models. CGNN (Yuan et al., 2023a) tackles label
noise in GNNs by integrating neighborhood-based label rectification
with contrastive learning. PI-GNN (Du et al., 2021) increases GNN
label noise resilience by adding pair-wise labels since pair-wise labels
are more robust than node-wise labels. Complete benchmarks such as
NoisyGL have been developed to assess GNN performance under several
degrees and kinds of label noise, supporting the building of stronger
GNNs (Wang et al., 2024e).

Noise-resistant Structural Analysis for graph noise learning
have been developed to address the unique problems of noisy data within
graph topologies. Unlike more traditional noise-reduction methods used
in other machine learning fields, these systems sometimes integrate
specific algorithms addressing the complexity of graph-based data. One
such strategy focuses on developing GNNs that are free of label noise.
The NR-GNN (Dai et al., 2021) can tolerate label noise in sparsely and
loudly labeled graphs to deal with graph-specific noise issues. Another
work investigates the particular methods applied in graph noise learning
to grasp and reduce graph structural noise (Dong and Kluger, 2023).

Further Discussion. GNNs encounter substantial difficulties stem-
ming from label noise, which directly affects their advancement and
efficacy. GNNs are struggling to generalize suitably from noisy data,
compromising both predictive powers and general robustness (Li et al.,
2024a; Wang et al., 2024e; Dai et al., 2021), which can significantly
reduce performance. Graph-noise learning research has mostly focused
on node categorization. Other significant objectives in graph learning
include link prediction, edge property prediction, and graph catego-
rization. Graph classification and graph transfer learning with label
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noise are understudied. Other graph learning research outside node
classification is still in its infancy and needs more attention.

2.1.3 Group-structured Noise Learning

In many real-world data acquisition processes, data are organized into
groups where each collection of instances is collectively associated with
a single class label. Alternatively, individual instances may be assigned
multiple labels, though only one of these labels is correct. A typical ex-
ample of the multi-instance-one-label scenario involves crawling images
from search engines using keywords. The retrieved images form a group,
linked by those keywords as labels. Moreover, in the one-instance-multi-
label case, a representative scenario is to use crowdsourcing to gather
multiple labels for each data point, provided by annotators. In general,
due to potential failures of search engines or human annotators, there
may be cases where there are wrong correlations between individual
data and labels within groups, i.e., the group noise exists. The related
research problems are multiple-instance learning, partial label learning,
and group noise learning. In Figure 2.4, we illustrate the comparison of
group structured noise with pair-wise noise.

Overall Framework

test instances 𝒙

𝐺𝜏 𝐱; 𝐟 = ቊID 𝑠 𝐱; 𝐟 ≥ 𝜏
OOD 𝑠 𝐱; 𝐟 < 𝜏

Test Input x (either ID or OOD) Classification Model f OOD Detector 𝐺𝜏
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Figure 2.4: Illustration of the supervised learning with pair-wise noise (a) and
two settings with group-structured noise (b)-(c), in which the objects are realized
by instances and labels, respectively. In the figure, black lines represent the correct
relations while red lines mean the incorrect relations.

Problem Setup. Formally, in conventional supervised learning, we
have a dataset of instances {xi, yi}, where each xi should be assigned
by {xi, yi}. However, in group-structured noise learning, the dataset
consists of a set of data {Xi, Yi}, where either Xi or Yi denote a set of
instances or labels. Due to the noisy nature, there are some individuals
inside Xi or Yi that do not have a correct relationship with each other.
Then, the general goal of group-structed noise learning is to find a
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proper model f such that it can use individual instances as inputs and
return its correct instance-level labels.

Multiple-instance Learning considers the multi-label-one-in-
stance setup, where a collection of instances (termed bags) is assigned
with a binary label. The basic assumption in multiple-instance learning
is that there is at least one positive instance inside a positively labeled
group, whereas all individual instances inside a negative group are
negative. Broadly speaking, the primary objective of multiple-instance
learning can vary between bag-level and instance-level predictions. Our
focus here in mainly on the instance-level prediction, which is intricately
linked to learning in the presence of noise. Multiple-instance learning has
applications in various fields such as bio-informatics and drug activity
predictions.

Formally, in conventional supervised learning, we have a dataset of
instances {xi, yi}, where each xi should be assigned by {xi, yi}. However,
in multiple-instance learning, the dataset consists a set of bags {Xi, Yi},
where Xi = {xi1, . . . , xini} is a set of instances and Yi is the associated
label of Xi. In multiple-instance learning, we typically consider the
existential assumption: if Yi = 1, at least one instance inside Xi should
be positive; if Yi = 0, all instances inside Xi are negative. Then, our
goal is to find a proper model f such that it can it individual instances
as inputs and return its correct instance-level labels.

Here we introduce two representative works for the task of multi-
instance learning. Key Instance Detection (KID) (Liu et al., 2012) aims
to figure out those key instances that are responsible for the bag label.
To find the key instance, KID leverages the relationships among instance
represented by a k-nearest neighbor graph, and suggests an iterative
voting-based method that can continuously refine the estimation of
instance labels. Peng and Zhang (2019) devise a loss function tailored
for instance-level label prediction, despite the absence of instance labels.
The main idea is based on unbiased estimation: The authors derive an
unbiased estimator for the instance-level label prediction without direct
label information, assuming that the proportion of negative instances is
known as a priori and that instances are independently and identically
distributed.
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Group Noise Learning expands upon the limited setup of multiple-
instance learning. It accommodates multi-class learning scenarios and
assumes that each group, irrespective of the assigned labels, may consist
of instances that are wrongly labeled. The framework of group noise
learning is more broadly applicable to a variety of practical applications
than multiple-instance learning, including search engine-based data
crawling and recommender systems.

Similar to multiple-instance learning, the dataset in group noise
learning consists a set of bags {Xi, Yi}, where Xi = {xi1, . . . , xini} is a
set of instances and Yi is the associated label for Xi. However, in group
noise learning, Yi is not restricted to binary value. Moreover, within
each bag Xi, there may be some instances xij that should not be labeled
by Yi, regardless the value of Yi.

To tackle this challenging issue, Kotzias et al. (2015) especially
explore the inherent capacity of deep learning with a new learning
objective tailored for instance-level prediction. The key assumption for
the success of this work is that similar instances in the manifold should
have similar labels. Thereby, the authors suggest a manifold regular-
ization term to penalize differences in predicted labels between similar
instances. Also, to explore the knowledge behind group-level labels, the
authors further include a term to constrain the relationship between
instance and group labels. The balance between instance similarity and
group-level constraints lead to the overall objective function, allowing
the model to effectively infer instance-level labels while adhering to
group-level information. Max-Matching (Wang et al., 2021c) further
consider the non-independent and identically distributed assumption,
exploring a novel learning objective that can discover correct pairwise
connections between instances and labels and thereby leveraging the
relationships among instances in each group to pursue group noise
robust learning.

Partial Label Learning is very different from multiple-instance
learning and group noise learning, which considers the situation where
each training instance is assigned with a set of candidate labels, among
which only one of them is the true label. The objective of partial label
learning is to leverage the candidate labeling to train a proper classifi-
cation model that can make the correct prediction for test instances.



94 Trustworthy Data-centric Learning

Partial label learning considers a practical setup that can be common
in domains like image and video recognition, where annotations often
come from different sources or annotators, but it is typically unclear
which label is correct. Formally, we consider a set of data {xi, Yi},
where Yi = {yi1, . . . , yini} is a set of candidate labels for xi. The basic
assumption for partial label learning is that the true label yi for xi is
contained within Yi. Then, the goal of partial label learning is to learn
a classifier f that can predicts the true label y for any new instance x.

There are in general two lines of methodologies considered for par-
tial label learning, namely, the average-based and the detection-based
methods. For average-based methods, they would like to take all candi-
date labels with equal contributions. For example, Cour et al. (2011)
transform the multi-class partial label problem into a set of binary
classification problems and tackle the ambiguity within Yi by measuring
the maximum probability that an incorrect label is included in the can-
didate set alongside the true labels. On the other hand, detection-based
methods aim at revealing the true labels among the candidates. For
example, Zhang et al. (2016) suggests a two-stage method named partial
label learning via feature-aware disambiguation (PL-LEAF), which can
effectively explore information from the feature space to assist in label
disambiguation. Yu and Zhang (2016) directly maximize the margin
between the ground-truth label and all other labels, including those
within the candidate label space. Yao et al. (2020) introduce an entropy
minimization regularization term to sharpen the confidence of model
predictions and then leverage the average model predictions across dif-
ferent training epochs to form an ensemble label as a proper estimation
of the true labels.

Further Discussion. Although group-structured data are prevalent
in various real-world scenarios, there are still numerous open questions
required to be addressed. In particular, there is still a lack of com-
prehensive frameworks capable of spanning a wide range of specific
problem settings meanwhile also facilitating the effective formalization
of these problems. Additionally, there is no unified framework currently
available that faciltates an understanding of how to address the noise
within group structured data.
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In the future, research directions could include considerations of
instance-level noise, where some data within groups may not more prone
to incorrect assignments than other data. Exploring the connections
within and across groups could also be beneficial in enhancing the
learning processes for group-structured noise. Furthermore, researchers
have the opportunity to broaden the applications of group-structured
noise learning and improve the generality of models for the considered
research problems.

2.2 Long-tailed Learning

Long-tailed learning tackles the challenge of skewed data distributions,
which hinders model performance on underrepresented classes. This is-
sue, common in real-world datasets across domains like visual recognition
and healthcare, demands tailored solutions to balance representation
quality and enhance generalization. Without loss of generality, in this
section, we examine the long-tailed learning in the context of super-
vised, weakly-supervised, and self-supervised settings, which retrospects
several typical paradigms for long-tailed learning in Figure 2.5.

Long-tailed Learning
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Long-tailed Learning

Inaccurate-Supervised

Inexact-Supervised
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Self-Supervised
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Optimization-Level
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Figure 2.5: The overall framework of long-tailed learning methods.

Generally, supervised long-tailed learning focuses on class rebalanc-
ing techniques and classifier adjustments to directly address skewed
class distributions during training. Weakly-supervised methods leverage
incomplete, inexact, or noisy labels to reduce annotation costs while
managing data imbalance. Self-supervised learning emphasizes unsu-
pervised feature extraction, offering greater resilience to label scarcity
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and bias. Together, these paradigms demonstrate the evolution of long-
tailed learning from explicit supervision to wild relaxation, offering a
comprehensive framework for tackling imbalanced datasets.

2.2.1 Supervised Long-tailed Learning

Supervised long-tailed learning deals with the problem of class imbal-
ance by improving loss functions, representation learning, and classifier
geometry. This section looks at important studies that try to improve
model performance in this area. The main methods in this field are
shown in Figure 2.6.

Loss Adjustment Representation Classifier Calibration

Representation

Classifier

Figure 2.6: The framework of supervised long-tailed learning methods. Methods of
loss adjustment adjust the decision boundary, methods of representation decouple
the representation structure and classifier, while methods of classifier calibration
analyze geometric structure like ETF (Strohmer and Heath Jr, 2003).

Problem Setup. Let x represent the input and y represent the
corresponding label. We assume the inputs follow x ∈ Rd and come from
C distinct classes, i.e., y ∈ {1, . . . , C}. In supervised long-tailed learning,
the dataset exhibits significant class imbalance, which is quantified by
the imbalance ratio IR = minj∈Y |y=j|

maxj∈Y |y=j| ≤ 1, where |y = j| denotes the
number of samples in class j. The goal is to train a classifier fθ :
Rd → {1, . . . , C}, parameterized by θ, which minimizes the disparity in
performance across majority and minority classes. This requires solving
the problem of imbalanced data while keeping the overall accuracy.
Benchmark datasets like ImageNet-LT, Places-LT, and iNaturalist are
often used to test performance.
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Loss Function Design. In supervised long-tailed learning, design-
ing loss functions is a key strategy for handling class imbalance. This
section looks at three main approaches: analyzing the effective sample
number, adjusting decision boundaries, and balancing probabilities.

Methods based on the effective number have become important for
handling class imbalance by giving different weights to each class. The
Class-Balanced (CB) Loss, introduced by Cui et al. (2019), focuses on
the decreasing value of extra data in high-density classes. It introduced
the idea of the effective number of samples, which is based on the
number of samples in each class. This method shows that as the class
size increases, extra samples give less new information. Following this
idea, the AREA method (Chen et al., 2023d) redefines the effective
size from a geometric point of view. It looks at not only the number of
samples but also the distribution and relationships among samples in
the feature space. It quantifies the effective area spanned by the samples
of each class, which may exceed, match, or fall below the actual sample
count depending on the sample diversity and overlap. Luo et al. (2024)
builds on the top of an estimated density ratio for dynamic re-weighting,
which generalizes previous constant re-weighting by sample number.
The success of these methods shows the importance of considering
data overlap and feature diversity when designing re-weighting schemes.
It also points to a shift from using only statistical measures to more
detailed geometric and probabilistic approaches.

Adjusting decision boundaries is an important strategy to reduce the
performance gap between majority and minority classes in long-tailed
learning. LDAM, introduced by Cao et al. (2019b), improves class-
specific margins by giving larger margins to minority classes. These
margins are inversely related to the fourth root of the class sample
number. This strategy reduces overfitting in tail classes and keeps the
performance of head classes. When combined with deferred re-weighting,
LDAM balances generalization and accuracy across class distributions.
UML (Khan et al., 2019) uses Bayesian uncertainty to change decision
boundaries. It increases margins for underrepresented classes with higher
uncertainty, which helps improve generalization for rare classes. Addi-
tionally, it models sample-level uncertainty using Gaussian distributions,
enabling more flexible and context-aware boundary adjustments. LOCE
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(Feng et al., 2021) takes a multi-faceted approach by introducing Equi-
librium Loss and Memory-augmented Feature Sampling. It increases
margin for tail classes based on classification scores, while MFS over-
samples minority class features to ensure better representation. RoBal
(Wu et al., 2021) integrates margin engineering with a scale-invariant
classifier to tackle adversarial robustness and long-tailed distributions.
By rebalancing margins during training and adjusting boundaries at in-
ference, RoBal enhances both natural and robust accuracies, challenging
in adversarial scenarios.

Many methods address long-tailed recognition from a probabilistic
view. They focus on adjusting class probabilities to improve the balance
between head and tail classes. These methods share a common insight
that the model’s prediction tends to be biased by the training data
distribution, and thus require mechanisms to calibrate such bias. Logit
Adjustment (LA) (Menon et al., 2020) started this approach by adding
prior knowledge directly into the prediction process. It adds a correction
term based on class frequencies, helping the model adjust for bias
in the training data. Distribution Alignment (DisAlign) (Zhang et al.,
2021e) looks at how to separate the source label distribution from model
predictions. It introduced a framework that can adapt to different target
distributions using both post-processing and training-time adjustments.
LADE (Hong et al., 2021) builds on these ideas by using bounds from
information theory. It offers a method to regularize model predictions
during training, making them independent of source label distributions.
This helps the model generalize better to different target distributions
without retraining. These methods for balancing probabilities have
shown strong results in long-tailed recognition tasks and come with
solid theoretical support.

Representation and Classifier Geometry. Representation qual-
ity has become an important factor in solving the challenges of su-
pervised long-tailed learning. High-quality representations form the
foundation for robust and generalizable classifiers, especially under the
imbalanced conditions inherent to long-tailed datasets. Conjugated with
the representations, the classifier geometry similarly matters along with
the representation distribution for supervised long-tailed learning. This
section discusses the representation and classifier calibration methods.



2.2. Long-tailed Learning 99

Decoupled approaches (Kang et al., 2020; Chu et al., 2020; Desai
et al., 2021) have emerged as an effective paradigm for addressing long-
tailed recognition challenges. Rather than jointly optimizing feature
extractors and classifiers, these methods separate the learning process
into two distinct stages. The key insight is that representation learning
and classification have different optimal strategies when dealing with
imbalanced data distributions. Kang et al. (2020) demonstrated that
high-quality representations could be learned effectively using instance-
balanced sampling, without requiring complex re-sampling strategies.
This suggests that the feature extractor can capture general visual
characteristics even from imbalanced data. The classification stage can
then be optimized separately. Chu et al. (2020) introduces a feature-
space augmentation strategy that decouples representation learning
and classification. By decomposing features into class-specific and class-
generic components, this method leverages the transferable knowledge
from head classes to generate augmented features for tail classes during
training, thus addressing data imbalance at a conceptual level. Desai
et al. (2021) showed that the decoupling principle was particularly
powerful when both entity and predicate distributions were heavily
skewed. Their work revealed that maintaining the simple architectures
while carefully designing the decoupled training strategy can outperform
much more complex models.

Neural collapse, a recently observed phenomenon, describes the
convergence of within-class feature means and classifier weights to the
vertices of a simplex equiangular tight frame (ETF) during the terminal
phase of training. This geometric structure minimizes within-class vari-
ability, maximizes between-class separation, and aligns classifier weights
with feature means, resulting in a highly symmetric configuration that
simplifies classification (Papyan et al., 2020). The ETF (Strohmer and
Heath Jr, 2003), as a mathematical construct, ensures optimal equian-
gular separation among class vectors and has been rigorously defined
within the framework of tight frames. Building on this idea, Yang et al.
(2022b) showed that initializing the classifier as a fixed simplex ETF
and training only the backbone can cause neural collapse, even with
strong class imbalance. This method helps stabilize feature learning, fix
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gradient imbalances, and prevent problems like the merging of minority
class weights.

Further Discussion. Supervised long-tailed learning has made
great progress in recent years. Many methods address class imbalance by
improving loss functions, representation learning, and classifier geometry.
However, there are still challenges and open questions that need more
study. The methods mentioned above have shown promise, but many
are designed for specific problems. Adding techniques from related
fields, like meta-learning (Hospedales et al., 2021), transfer learning
(Yin et al., 2019), and more statistical methods (Luo et al., 2024), could
offer new solutions for long-tailed learning. Also, supervised long-tailed
learning benefits from strong theories like Fisher consistency, which
connects loss minimization with balanced error reduction (Menon et
al., 2020), and fine-grained generalization bounds, which explain class-
specific behaviors through data-dependent contraction (Wang et al.,
2024f). These tools improve reliability and flexibility, helping guide
future research toward clearer and more effective models for complex
situations.

2.2.2 Wealy-supervised Long-tailed Learning

Traditionally, long-tailed learning assumes a fully and accurately anno-
tated training dataset. However, in practice, obtaining such complete
and high-quality annotations is generally challenging, expensive, and
time-consuming, especially for minority classes or groups. Such a con-
straint is even more prominent in applications where data annotation
is highly specialized or involves privacy concerns. Thus, in many appli-
cations, we can only obtain imperfect annotations, leading to weakly
supervised scenarios. Weak supervision introduces distinct challenges in
the context of long-tailed learning because it either masks the imbalance
patterns in the data or does not satisfy the assumptions and principles
upon which typical supervised long-tailed learning methods require.

Problem Setup. Let X be the input space and Y = {1, 2, . . . , C} be
the label space, where C is the number of classes. A long-tailed training
dataset with weak supervision can be denoted as D = {xi, ŷi, yi}N

i=1,
where ŷi is the observed annotation of the sample xi ∈ X , and its
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ground truth yi ∈ Y is invisible. Weak supervision means that ŷi may
not match the ground truth yi for each sample xi, but it can still
provide some useful information compared to having no annotations at
all. The sample number Nc of each class c ∈ Y in the descending order
exhibits a long-tailed distribution. The imbalance ratio is defined as
IR = maxc∈Y Nc

minc∈Y Nc
≫ 1. For evaluation, a class-balanced test set Dtest with

clean labels is used. The goal of weakly-supervised long-tailed learning
under label noise is to learn a deep model f : X → p(Y) on D that
minimizes the error rate on Dtest. Different forms of weak supervision
correspond to different specific problem settings. Generally, the types
of weak supervision can be categorized as follows (Zhou, 2017):

• Incomplete supervision: only a subset of the training data is
provided with labels, while the remaining data remains unlabeled.
That is, the training set D consists of a labeled subset Dl and
an unlabeled subset Du, such that D = Dl ∪ Du. ∀(x, ŷ, y) ∈ Dl,
ŷ = y; ∀(x, ŷ, y) ∈ Du, ŷ = ∅. This form of supervision is often
referred to as semi-supervision in many works (Zhu, 2005; Zhu
and Goldberg, 2022).

• Inexact supervision: only coarse-grained labels are provided, which
are less precise than desired. A typical scenario is partial label
learning, where each sample xi is labeled with a coarse set that
includes the ground truth rather than the exact ground truth
itself, i.e., ŷi ∈ 2Y \ ∅ and yi ∈ ŷi (Hüllermeier and Beringer, 2006;
Feng et al., 2020).

• Inaccurate supervision: the supervision is not always the ground
truth. A typical scenario is learning with label noise, where certain
samples contain incorrect labels. The noise ratio is defined as the
mislabeled ratio of training set NR = 1

N

∑N
i=1(ŷi ̸= yi) (Natarajan

et al., 2013; Li et al., 2020b).

As illustrated in Figure 2.7, weakly-supervised learning typically
focuses on refining supervision during the training process to make it
more comprehensive, precise, and accurate, thereby guiding the model
to achieve better performance. However, the imbalanced distribution
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Figure 2.7: The overall framework of weakly-supervised long-tailed learning.

of training data often renders typical supervision refinement methods
ineffective. It can also lead to the accumulation of errors and biases
during iterative training, significantly harming the model performance.
Research on weakly-supervised long-tailed learning primarily focuses
on maintaining effective supervision refinement under imbalanced data.

Incomplete-supervised Long-tailed Learning. A common ap-
proach for advanced algorithms handling incomplete supervision is to
generate pseudo-labels for unlabeled data based on model predictions
and iteratively use the pseudo-labeled data for training (Miyato et
al., 2019; Gan and Wei, 2024). However, when the training data is
imbalanced, the pseudo-labels generated by the model for unlabeled
data tend to exhibit even more extreme imbalances, further impairing
the model’s performance and generalization ability (Kim et al., 2020).
DARP (Kim et al., 2020) refines the original, biased pseudo-labels so
that their distribution can match the true class distribution of un-
labeled data while constraining the refined pseudo-labels to be close
to the original ones. Auxiliary Balanced Classifier (ABC) (Lee et al.,
2021) is inspired by the observation in supervised long-tailed learn-
ing (Kang et al., 2020) that high-quality representations can be learned
even when the classifier is biased. ABC trains an auxiliary balanced clas-
sifier by resampling a balanced subset while leveraging the high-quality
representations learned from the entire dataset. BaCon (Feng et al.,
2024) introduced the contrastive learning paradigm in semi-supervised
long-tailed learning, while also constraining the feature-label balance to
improve both model performance and fairness. BEM (Zheng et al., 2024)
firstly explored a balanced data mixing method for semi-supervised
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long-tailed learning, considering rebalancing both data quantity and
uncertainty.

Inexact-supervised Long-tailed Learning. The state-of-the-art
paradigm for handling inexact supervision gradually eliminates ambi-
guities in coarse annotations based on the model predictions during
training, ultimately obtaining fine-grained labels to aid model training.
When faced with long-tailed training data, the frequency bias makes the
label disambiguation process more challenging, further degrading the
model performance (Wang et al., 2022a; Hong et al., 2023). Solar (Wang
et al., 2022a) proposes refining the disambiguated labels to match the
marginal class prior distribution in imbalanced partial label learning,
modeling it as an Optimal Transport problem, and solving it using the
Sinkhorn-Knopp algorithm (Cuturi, 2013). Hong et al. (2023) suggest
that the key challenge in handling imbalanced data under inexact super-
vision lies in the drastic dynamic changes in model bias caused by the
label disambiguation process, which traditional long-tailed learning tech-
niques cannot address. They proposed RECORDS, which dynamically
estimates model bias and performs rebalancing through a momentum-
updated prototype during the training process. Based on it, Jia et al.
(2024) proposed a collaborative strategy with a head-tail dual classi-
fier for long-tailed partial label learning, which alleviates the trade-off
between head and tail performance through adaptive assignment.

Inaccurate-supervised Long-tailed Learning. The key to han-
dling inaccurate supervision lies in identifying data that is mislabeled
or poorly annotated, and then training the model either using a semi-
supervised paradigm or by correcting these erroneous labels. Mainstream
noise-label learning methods tend to assume that difficult samples are
more likely to be mislabeled. However, when the training data is im-
balanced, such difficult samples could also be accurately labeled as tail
samples. Differentiating between tail samples and mislabeled samples is
a key challenge in inaccurate-supervised long-tailed learning. RoLT (Wei
et al., 2021) introduced a prototypical noise detection method for long-
tailed data that employs a distance-based metric, making it robust to
label noise. UCL (Huang et al., 2022) proposed modeling class-specific
noise using epistemic uncertainty to identify trustworthy clean samples
and refine or discard highly confident true or corrupted labels, while
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also incorporating aleatoric uncertainty to prevent noise accumulation.
Wei et al. (2023a) proposed a Fairness Regularizer (FR), which encour-
ages the model during training to reduce the performance gap between
the head and tail groups. TABASCO (Lu et al., 2023) introduced a
two-stage, bi-dimensional sample selection method to more effectively
distinguish clean samples from noisy ones, especially for tail classes.

Futher Discussion. Existing research primarily focuses on the
effects of imbalances in prediction targets. However, as fairness in ma-
chine learning becomes increasingly important (Mehrabi et al., 2021;
Caton and Haas, 2024), addressing non-prediction-target imbalances,
such as attribute or subgroup imbalances, is just as critical. For instance,
imbalances in gender, age, or ethnicity in medical diagnosis scenarios
highlight this challenge (Chen et al., 2023c). When labels for predic-
tion targets are available but subgroup or attribute annotations are
unknown, such settings can be considered a form of weakly-supervised
long-tail learning. Addressing potential unknown subgroup or attribute
imbalances while training a model for prediction tasks, with the goal
of ensuring fairness, is both a challenging and worthwhile problem to
explore. Recent studies have begun exploring these contexts. Yang et al.
(2023b) established a comprehensive benchmark for subgroup imbalance
and domain shift, covering fields such as vision, language, and health-
care. SHE (Hong et al., 2024a) proposed using optimal data partition
to effectively uncover potential imbalanced subgroups during training
and balance predictions across different subgroups.

2.2.3 Self-supervised Long-tailed Learning

Self-supervised learning (SSL) has achieved significant strides in extract-
ing robust and transferable representations from large-scale unannotated
datasets in the context of computer vision (He et al., 2020; Henaff, 2020;
Chen et al., 2020c), speech understanding (Oord et al., 2018; Schneider
et al., 2019) and natural language processing (Devlin, 2018; Brown
et al., 2020). Specially, SSL-pretrained features often surpass supervised
counterparts, as they generalize well to a variety of downstream tasks
and datasets (Chen et al., 2020d; Grill et al., 2020; Zbontar et al., 2021).
However, most prominent SSL methods for images are conducted on



2.2. Long-tailed Learning 105

well-structured and curated datasets such as ImageNet (Deng et al.,
2009). The inherent uniform structure on these datasets is different
from real-world long-tailed distributions (Reed, 2001), potentially over-
looking the performance disparities of SSL. To address this challenge, a
research direction focusing on self-supervised long-tailed learning (Liu
et al., 2021c; Jiang et al., 2021; Zhou et al., 2022; Zhou et al., 2023b)
has emerged, aiming to mitigate the negative effect of long-tailed data
distribution without the guidance of explicit label annotations. In Figure
2.8, we present the core factors in self-supervised long-tailed learning.

Figure 2.8: Different from supervised and weakly-supervised long-taield learning,
which focus on learning a robust classifier, the key goal of self-supervised learning is
to enhance long-tailed learning at the representation level.

Problem Setup. Let x represent the input and y represent the
corresponding label. We assume the inputs x ∈ Rd coming from C

distinct classes, i.e., y ∈ {1, . . . , C}. In contrast to supervised learning
or weakly-supervised learning settings, where labels y are (partially)
available, self-supervised learning observes only the inputs x. The im-
balance ratio IR is defined based on the pre-training distribution P over
Rd × [C] as IR = minj∈[C] P(y=j)

maxj∈[C] P(y=j) ≤ 1. The imbalanced ratio captures
the disparity between the minority and majority class probabilities.
Self-supervised long-tailed benchmark datasets either use subsampled
subsets with varying imbalance ratios such as ImageNet-LT (Liu et al.,
2019) and Places-LT (Liu et al., 2019) or large-scale real-world dataset
such as iNaturalist (Van Horn et al., 2018). The learning objective
of the SSL paradigm is to obtain a feature extractor fϕ : Rd → Rm,
parameterized by neural network parameters ϕ, which maps inputs to
latent embeddings.
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A linear head gθ : Rm → RC , is added on top of fϕ during pretraining
to produce logits, which is often discarded during downstream evaluation.
The evaluation phase is commonly be categorized to in-distribution (ID)
evaluation and out-of-distribution (OOD) evaluations. ID evaluation
measures the performance of feature extractor fϕ on a balanced ID test
set using linear probing, while OOD evaluation assesses performance on
one or multiple downstream target distributions. Here, linear probing
involves additionally training a C-way linear classifier on top of fϕ using
a balanced, i.i.d. sampled dataset from the test distribution, and such
evaluation can also be extended to broader tasks, such as detection
and segmentation (Zhou et al., 2023b). Existing explorations on self-
supervised long-tailed learning can be broadly categorized into four key
aspects: input-level, model-level, optimization-level, and objective-level
methods, as shown in Table 2.1.

Table 2.1: An overview self-supervised long-tailed learning methods. The Input,
Model, Optimization, and Objective columns reflect modifications considered at the
respective levels. The description column provides descriptions of each method.

Method Input Model Optimization Objective Description

BCL (Zhou et al., 2022) ! Memorization-guided augmentation
COLT (Bai et al., 2023) ! Additional OOD data
SDCLR (Jiang et al., 2021) ! Model pruning and self-contrast
MoCLR (Tian et al., 2021) ! Multi-expert ensemble
RwSAM (Liu et al., 2021c) ! Reweighted sharpness regularization
TS (Kukleva et al., 2023) ! Temperature schedules
Focal (Lin et al., 2017) ! Hard example mining
GH (Zhou et al., 2023b) ! Geometric uniform clustering
PMSN (Assran et al., 2023) ! Clustering with long-tailed prior

Input-level Methods. These approaches generally seek to intro-
duce additional information to the input data, so that the learned
representation can be improved for long-tailed data distribution. From
the data augmentation perspective, BCL (Zhou et al., 2022) introduced
a memorization-guided data augmentation technique to enhance the
learning of tail classes. Specifically, BCL explores the memorization ef-
fect of deep neural network on individual sample, using a learning-speed
based-proxy in the SSL context to distinguish between head and tail
samples. Subsequently, the proxy drives an instance-wise augmentation
with distinct information discrepancies for head and tail samples. This
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allows enhancement of tail performance while maintaining the head per-
formance. From the perspective of additional training data, COLT (Bai
et al., 2023) proposed to leverage out-of-distribution data for tail class
rebalancing. Specifically, COLT utilizes a logit-based tailness score to
perform head-tail detection and then employs an online sampling strat-
egy to dynamically selects OOD samples from a large external data
pool that are close to the tail classes. The model trained with OOD-
enriched dataset, applies a distribution-level supervised contrastive loss
to improve long-tailed performance without inducing distribution shift.

Model-level Methods. These approaches focus on improving
structural design to address long-tailed challenges in SSL paradigm.
SDCLR (Jiang et al., 2021) draws inspiration from network pruning to
identify samples that are under-represented by the model. Specifically,
SDCLR leverages an model augmentation technique by pruning the
target model parameters for contrastive learning. The rationale is that
tail classes tend to be more sensitive to model pruning, which will exhibit
greater prediction differences between pruned and non-pruned models.
This self-contrastive pruning thus implicitly rebalances the contrastive
loss, placing more emphasis on tail classes. From a model ensemble
perspective, MoCLR (Tian et al., 2021) proposed to divide the dataset
into fine-grained subgroups, with expert models dedicated to learning
each subgroup. Specifically, MoCLR first applies unsupervised clustering
using a pretrained base model to split the dataset into smaller subsets.
Each expert is then trained from scratch on a specific subset, focusing
on semantic-related classes, and the expert knowledge is distilled into a
final base model. This approach helps recover local consistency within
smaller subsets of large-scale uncurated datasets, improving the model
ability to preserve long-tailed information without being dominated by
head classes in standard training on the entire dataset.

Optimization-level Methods. This line explores the training
schedules and optimization for long-tailed learning in SSL. Motivated by
the observation that tail classes are more prone to overfitting, RwSAM
(Liu et al., 2021c) introduced a data-dependent regularizer that applies
varying penalization to head and tail classes. RwSAM utilizes sharpness-
aware minimization (SAM) to penalize the sharpness of loss surface
during training, encouraging the model to converge to flatter minima
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for better generalization. To further emphasize tail classes, RwSAM
employs a reweighting strategy based on kernel density estimation,
providing stronger regularization for tail classes to rebalance the model.
In contrast, TS (Kukleva et al., 2023) explores the impact of temperature
factor in long-tailed contrastive learning. Specifically, TS proposed a
dynamic cyclical cosine temperature schedule that facilitates a ‘task
switching’ effecy between instance-wise discrimination and group-wise
discrimination, with the former benefiting tail classes and potentially
enhancing long-tailed representation learning.

Objective-level Methods. Generally, conventional SSL training
typically uses InfoNCE-based loss (Oord et al., 2018), which does not
account for class imbalance. The classical hard-example-mining method,
Focal loss (Lin et al., 2017) can be adapted to self-supervised long-tailed
context with minimal modification, which helps improve representation
learning for tail classes as hard examples. In contrast, GH (Zhou et
al., 2023b) identifies the limitation of contrastive learning loss from
a geometric perspective, and points out that the hidden sample-level
uniformity distorts the embedding space. This refers to the excessive
expansion of head classes and collapse of tail classes. To mitigate this,
GH introduces an optimal geometric structure as a uniformity prior
to preserve the global embedding space structure. Then, GH proposes
a optimal tranport-based clustering to generate surrogate labels for
regularizing samples toward the optimal structure. From a similar
perspective, PMSN (Assran et al., 2023) points out that contrastive
learning implicitly performs clustering with a uniform prior, which
exacerbates long-tailed distribution issues. To address this, PMSN
introduces a power-law distribution prior and proposes KL-divergence
regularization to align the learned feature clusters with the predefined
distribution.

Further Discussion. Long-tailed learning has long been a critical
and challenging research problem (Zhang et al., 2023f). However, its
application during the pretraining phase remains underexplored. In
the era of large foundation models (Dubey et al., 2024) pretrained on
massive, uncurated datasets, it is crucial to investigate how long-tailed
learning influences large-scale pretraining and how to mitigate head-tail
disparity to enhance model performance. Self-supervised long-tailed
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learning for images is a starting point, but other areas, such as mul-
timodal (vision-language) long-tailed learning (Parashar et al., 2024)
and long-tailed generative learning (Zhang et al., 2024b), need further
exploration. In vision-language learning, the differences and interac-
tions between modalities provide new opportunities to better address
underrepresented groups. Long-tailed generative learning, on the other
hand, poses challenges in understanding how long-tailed distributions
behave in diffusion-based or autoregressive models. Additionally, with
the increasing size and inaccessibility of pretraining data, detecting
underrepresented groups remains an open question.

2.3 Out-of-distribution Learning

Out-of-distribution (OOD) Learning aims to enable machine learning
models to tackle samples out of the training distribution. Due to the
inherited i.i.d. assumption generically adopted that assumes the testing
samples are drawn independently from a distribution identical to the
training one, machine learning models are sensitive and easily suffer
severe performance degeneration when encountering OOD data.

To mitigate the issue, as shown in Figure 2.9, it has been developed
two research approaches by categorizing the OOD data into ungeneral-
izable and generalizable ones. For the ungeneralizable OOD data, OOD
detection has been proposed to detect and separately handle it. As
ungeneralizable OOD samples can affect both the testing and training
of the model, post hoc and training-time OOD detection are developed
to manage OOD data during the respective stages. For the generaliz-
able one, OOD generalization has been proposed. OOD generalization
establishes a series of definitions of invariance that enable models to
generalize beyond training distribution. Furthermore, the optimization
for capturing the invariance raises unique challenges to model training
and selection, which requires careful consideration.

2.3.1 Out-of-distribution Detection

Out-of-distribution (OOD) detection refers to the problem of identifying
inputs of which the classification models do not have the capacity to
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Figure 2.9: The overall framework of out-of-distribution learning methods.
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make correct predictions for them. These data typically have the ground
truth labels that do not belong to the considered label space of the mod-
els. OOD detection is crucial for machine learning models, especially for
deep models, as they can produce unreliable or overconfident predictions
when presented with OOD inputs. OOD detection is widely used for
the field of medical analysis, auto-driving, and economy applications.
In Figure 2.10, we present the overall framework of OOD detection.

Problem Setting. Let X ⊂ Rd represent the feature space, while
Y = {1, . . . , C} denotes the label space for in-distribution (ID) data. We
define Xid ∈ X and Xood ∈ X as the random variables corresponding
to ID and OOD data, respectively. The label random variables are
represented as Yid ∈ Y for ID data and Yood /∈ Y for OOD data.
The joint distribution for ID data is denoted by PXid,Yid(x, y), while
PXood,Yood represents the joint distribution for OOD data. The marginal
distributions are given by PXid for ID data and PXood for OOD data.

(1) OOD Score Functions. Let DTrain
ID = {(xi, yi)}n

i=1 be the training
dataset consisting of ID samples drawn from the joint distribution



2.3. Out-of-distribution Learning 111

PXid,Yid . Following the framework established by Fang et al. (2022b),
the goal of OOD detection is to train a detector G using DTrain

ID such that
for any test sample x: 1) if x is sampled from PXid , then G accurately
classifies x into the correct ID classes; and 2) if x is drawn from PXood ,
then G identifies x as OOD.

In this context, given a threshold τ , a pre-trained ID model fθ,
and a scoring function S, a sample x is classified as ID if and only if
S(x; fθ) ≥ τ : {

Gτ (x) = ID , if S(x; fθ) ≥ τ

Gτ (x) = OOD , otherwise
(2.1)

The success of OOD detection methods largely hinges on the design
of the scoring function S and the model fθ, ensuring that the scores for
OOD samples are consistently lower than those for ID samples.

(2) Outlier Exposure. To improve OOD detection performance, a
fine-tuning approach known as Outlier Exposure (OE) (Hendrycks et
al., 2018) has been introduced. OE incorporates surrogate OOD data
DOUT = {xs

j}m
j=1 and applies a fine-tuning strategy based on empirical

risk minimization, formulated as:

arg min
θ

1 − α

n

n∑
i=1

ℓ(fθ(xi), yi) + α

m

m∑
j=1

ℓOE(fθ(xs
j)), (2.2)

where α is a hyperparameter, ℓ denotes the loss function, and ℓOE
represents the surrogate OOD loss. By leveraging surrogate OOD data,
the model can learn to position certain OOD samples in latent embed-
dings that are distant from all ID classes, which typically enhances the
performance of OOD detection.

Post hoc OOD detection. methods are specifically designed to
differentiate between ID and OOD data without the need to retrain
neural networks or modify their parameters. Some methods just rely
on the output of the classifier to achieve OOD detection. For example,
MSP (Hendrycks and Gimpel, 2017) assigns scores based on the highest
softmax probability across ID categories. Energy (Liu et al., 2020d)
applies an energy function to logits for OOD score computation. Open-
Max (Bendale and Boult, 2016) enhances this approach by replacing the
softmax layer to directly estimate the likelihood of an input belonging
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to an unknown class. TempScale (Guo et al., 2017) refines softmax
probabilities through temperature adjustment, while ODIN builds on
TempScale by introducing input preprocessing to further improve OOD
detection.

Other methods focus on features of the classifier, including Logit-
Norm (Wei et al., 2022), which normalizes logits for better confidence
calibration, and GradNorm (Huang et al., 2021a), which computes
the Kullback-Leibler (KL) divergence between the softmax probabil-
ity distribution and a uniform distribution, using gradients from the
penultimate layer as the OOD score. ReAct (Sun et al., 2021) modifies
feature vectors by applying a threshold based on specified magnitudes,
and Energy employs energy-based models for uncertainty estimation.
Mahalanobis (Lee et al., 2018) fits class-conditional Gaussian distri-
butions to the penultimate layer features, deriving OOD scores using
Mahalanobis distance. ViM (Wang et al., 2022b) augments logits with
the norm of feature residuals compared to ID training samples. KNN
(Sun et al., 2022a) applies a k-nearest neighbors approach to penultimate
layer features. DICE (Sun and Li, 2022) sparsifies the last linear layer
before computing logits, while RankFeat (Song et al., 2022b) transforms
feature matrices to ensure they have a rank of one. ASH (Djurisic et al.,
2023) modifies activations in later layers by simplifying the remaining
elements, and SHE (Zhang et al., 2023b) maintains a template repre-
sentation for each ID category, detecting OOD samples by measuring
the distance between an input’s representation and its corresponding
template.

Training-time OOD detection. Many researchers find that post-
hoc detection methods has limited capacity when conducting detection,
indicating that conventionally trained models might not be so powerful
for this task. It motivates researchers to explore fine-tuning-based
methods, directly enhancing the capabilities of models in OOD detection.

Some methods use contrastive learning methods to improve the
representations of models in discerning between ID and OOD. For
example, contrasting shifted instances (CSI) (Tack et al., 2020) contrasts
a given sample with its distributionally shifted augmentations, alongside
with a new detection score tailored for the proposed method. Self-
supervised outlier detection (SSD) (Sehwag et al., 2021) proposes an
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effective data augmentation strategy that can synthesize data that can be
viewed as OOD data, and then leverages self-supervised representation
learning to capture meaningful features. It also suggests a Mahalanobis
distance-based method in identifying OOD data.

Other methods further involve the surrogate OOD data during train-
ing. For example, outlier exposure (OE) learns to discern the pattern
between ID and OOD data, directly making models learn representa-
tions of both ID and OOD samples. However, surrogate OOD data
might not be informative enough to characterize the real (unseen) OOD
distribution, motivating a series of subsequent works to further improve
OE. Posterior Sampling-based Outlier Mining (POEM) (Ming et al.,
2022b) assumes that some OOD data are more informative than others,
thereby suggesting a dynamic learning framework that balances the
exploration of new OOD data and the exploitation of known useful
outliers. Katz-Samuels et al. (2022) consider the noise situations that
use unlabeled data collected from wild, naturally including both ID
and OOD samples. To combat this challenging situation, the authors
suggest a constrained optimization problem that maximizes OOD de-
tection performance while minimizing mis-classification of ID data.
Distributional-Augmented OOD Learning (DAL) (Wang et al., 2023e)
considers the situation where the auxiliary OOD data may suffer from
the distribution gap over that of the real OOD data. DAL proposes
augmenting the auxiliary OOD data by generating a set of candidate
distributions within a Wasserstein ball centered around the original
auxiliary OOD distribution. Then, the models learn from the worst-case
data from the Wasserstein ball to ensure the unifromly well performance
within the enlarged OOD distribution set, thereby mitigating OOD
distribution gap.

Further Discussion. The emergence of Vision-Language Models
(VLMs) has ushered in a new era for OOD detection, specifically through
the utilization of pre-trained VLMs for this purpose. This shift has
led to a significant rise in the use of textual information for visual
OOD detection, yielding impressive results (Fort et al., 2021; Ming
et al., 2022a; Wang et al., 2023b). For instance, Fort et al. (2021)
introduce a method that utilizes the names of potential outlier classes
as input for CLIP (Radford et al., 2021b). ZOC (Esmaeilpour et al.,
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2022) enhances CLIP by incorporating a text-based image description
generator, which produces candidates for OOD labels during testing.
MCM (Ming et al., 2022a) employs a straightforward approach by using
the maximum predicted softmax value as the OOD score, representing
an effective post-hoc detection method grounded in vision-language
pre-training. CLIPN (Wang et al., 2023b) trains a text encoder to enable
CLIP to interpret negative prompts, thereby effectively distinguishing
OOD samples based on the similarity differences between two text
encoders and a fixed image encoder. Additionally, LSN (Nie et al., 2024)
leverages CLIP to create negative classifiers by learning from negative
prompts, which helps in identifying images that do not belong to a
specified category. NegLabel (Jiang et al., 2024b) proposes a simple yet
effective pipeline that involves selecting potential OOD labels from a
comprehensive semantic pool, such as WordNet (Fellbaum, 1998), and
subsequently utilizing a pre-trained VLM like CLIP to categorize input
images into ID and OOD class groups. EOE (Cao et al., 2024) harnesses
Large Language Models (LLMs) to generate OOD labels, adapting its
prompts to effectively address a variety of tasks.

2.3.2 Out-of-distribution Generalization

Out-of-distribution (OOD) generalization refers to the problem of train-
ing a classification model given data from certain environments to
generalize well to data from unseen test environments. The underlying
data distributions of samples from different environments may contain
distribution shifts due to the environmental influence of data collec-
tion and processing. Machine learning models can easily fail in OOD
generalization due to the violation of the i.i.d. assumption. However,
as the distribution shifts are everywhere such as in autopilot systems
and scientific discovery, failing to generalize robustly to OOD data may
introduce unprecedented risks or fairness issues (Koh et al., 2021). In
Figure 2.11, we present one general illustration of the pipeline for OOD
generalization.

Problem Setting. OOD generalization considers a standard super-
vised learning setting, where the data D = {De}e∈Eall is collected from
multiple causally related environments Eall. The data De = {xe

i , ye
i } from
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Figure 2.11: Illustration of the pipeline for OOD generalization. Dataset examples
are from Koh et al. (2021).

a single environment e ∈ Eall are drawn independently from an identical
distribution P e (Peters et al., 2016). The objective of OOD generaliza-
tion is to solve for a predictor f : X → Y such that maxe∈Eall Le(f),
where Le is the empirical risk (Vapnik, 1991) under environment e, X
and Y are the input and labeling spaces, respectively. In other words, f

needs to generalize well to all (unseen) environments given the access of
training environments {De}e∈Etr , The predictor can be decomposed as
a feature extractor φ : X → Z and a classifier to extract useful features,
and a classifier w : Z → Y to make predictions based on the extracted
features. For example, φ can be a deep neural network and w can be a
simple linear classifier at the last layer (Koh et al., 2021).

Many flavors of invariance for OOD generalization. It is
the key to identifying the invariance across different distributions and
environments for OOD generalization. Therefore, it has been devel-
oped a rich literature of multiple definitions of invariance. Domain
Generalization establishes the invariance across different domains or
environments (Ganin et al., 2016; Sun and Saenko, 2016; Li et al., 2018).
However, it has been shown that domain invariant features can not
guarantee good OOD generalization performance (Zhao et al., 2019).
Moreover, Distributionally Robust Optimization requires the mod-
els to be robust to mild perturbations onto the training distributions,
such that the models are expected to perform well in unseen OOD
distributions (Namkoong and Duchi, 2016; Hu et al., 2018; Sagawa
et al., 2020).

Recently, the concept of Causal Invariance has been adopted to
learn invariant representations that capture the direct causal parents of
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the target variable (Peters et al., 2016; Rojas-Carulla et al., 2018). In-
spired by the Independent Causal Mechanism (ICM) in causality (Peters
et al., 2017a), the causal invariance principle considers the generation
of the environments are interventions onto the underlying data genera-
tion process, and the causal mechanism generating the target variable
given its direct parents is independent from the interventions. Therefore,
predictions based only on the direct parents of the target variable are
invariant to distribution shifts. Arjovsky et al. (2019) first implement
the causal invariance principle in the deep networks as the framework
of Invariant Risk Minimization (IRM), which has inspired a number
of invariant learning works (Parascandolo et al., 2021; Mahajan et al.,
2021; Wald et al., 2021; Ahuja et al., 2021; Krueger et al., 2021; Shi
et al., 2022; Rame et al., 2022a).

The presence of environment or domain labels is crucial to the
success of OOD generalization. However, the environment labels may
not always be available. Creager et al. (2021) and Liu et al. (2021d)
propose to estimate the environment label by predicting invariance
information. Liu et al. (2021b), Zhang et al. (2022c), and Pezeshki
et al. (2024) try to infer labels based on the failures of an ERM model.
Nevertheless, the inference of environment labels may not be possible
without additional inductive biases (Lin et al., 2022). Therefore, Lin
et al. (2022) and Tan et al. (2023) propose to incorporate auxiliary
information about the data generation process to identify the invariance.

In addition, the challenge of OOD generalization also emerges in a
broader scope. Chen et al. (2022), Gui et al. (2022), Chen et al. (2023e),
and Yao et al. (2024a) study the OOD generalization on graphs, where
the invariant features are considered as critical subgraphs (Miao et al.,
2022; Chen et al., 2024c). Gagnon-Audet et al. (2023) and Xie et al.
(2024) study the evolving invariant features along the time.

Optimization challenge in OOD generalization. The trade-off
between ERM and OOD generalization is inevitable due to their intrinsic
conflicts. Gulrajani and Lopez-Paz (2021) show that most existing OOD
algorithms fail to outperform ERM in domain generalization under
rigorous and fair comparison. Sagawa et al. (2020) and Zhai et al. (2023)
find that regularization on ERM, or sacrificing ERM performance, is
usually needed for achieving satisfactory OOD performance. There is
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often a trade-off between in-distribution and OOD performances (Zhao
et al., 2022; Sadeghi et al., 2022; Teney et al., 2023). Chen et al. (2023g)
study and tackle the issue by formulating the OOD generalization as a
multi-objective optimization problem. Zhang et al. (2022a) and Chen et
al. (2023f) dive into the optimization challenge from the feature learning
perspective and propose to learn rich feature representations to tackle
the issue. In addition, Chen et al. (2023f) show the limitations of OOD
generalization methods in learning useful features than simple ERM,
especially in deep neural networks (Rosenfeld et al., 2022; Zhang et al.,
2022a). The success of rich feature learning aligns with the empirical
success of weight average (Rame et al., 2022b), model ensemble (Arpit
et al., 2022; Lin et al., 2024d) and flatness-aware optimization (Cha
et al., 2021) in OOD generalization.

Future Discussions. Recently, large pre-trained models, especially
large Vision-Language Models (VLMs) have gained huge success in
tackling the distribution shifts. The pretraining on an unprecedented
scale of real-world data enables large pre-trained models to learn rich
world knowledge and to adapt to new environments. In particular, large
VLMs demonstrate remarkable performance in OOD generalization
across a wide range of vision and multimodal tasks, surpassing con-
ventional ImageNet-trained models by a large margin. It has attracted
surging interest from the community to understand the OOD general-
ization capabilities of large VLMs. Fang et al. (2022a) show that the
pretraining data distribution has the most significant influence on the
generalization capabilities of the large VLMs than other factors such as
model architectures or the number of training samples.

Santurkar et al. (2023) identify factors such as captioning quality are
crucial for the generalization capabilities of large VLMs by comparing
to single-modal learning, for which Huang et al. (2024d) provide a theo-
retical explanation. Mayilvahanan et al. (2024) show that large VLMs
are able to generalize well beyond memorizing matching similar training
examples. However, Wang et al. (2024b) curate a real-world dataset
and show that large VLMs still learn spurious features. Consequently,
large VLMs may perform even worse than conventional models trained
on ImageNet and cause the hallucination issue when incorporated with
large language models. Therefore, it remains an open problem of how
to improve the OOD generalization capabilities of large VLMs.
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2.4 Adversarial Examples and Defense

Adversarial Examples (AEs) are crafted by applying adversarial attacks
to pretrained deep neural networks (Szegedy et al., 2014; Goodfellow
et al., 2015). It contains human imperceptive perturbations but AEs can
easily obfuscate well-trained classifiers and cause classification accuracy
nearly drop to zero drastically. In Figure 2.12, it presents the general
paradigm of the generation of AEs through adversarial attack. As society
increasingly relies on large-scale models, AEs pose serious safety threats
to their reliability. Hence, it is crucial to design robust defense strategies
against adversarial attacks to ensure the trustworthiness of machine
learning models. This section introduces three predominant adversarial
defense frameworks since the discovery of AEs.

Adversarial Examples and Defenses

ℓ𝑝 - norm
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Unbounded

Adversarial 
Training
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Figure 2.12: Paradigm of adversarial examples and adversarial defense.

2.4.1 Adversarial Purification

Adversarial purification (AP) has recently emerged as an effective adver-
sarial defense framework and a focus on different aspect of the system
with other adversarial defense frameworks. AP aims to achieve input
level robustness by adapting denoising methods to recover clean data
from the adversarial examples. Since pretrained classifiers are robust
and accurate to natural data classification, AP methods focus on pro-
jecting the adversarial data back to the natural data manifold (Meng
and Chen, 2017). Compared to the excellent performance of Adversarial
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Training (AT) (Madry et al., 2018), AP exhibits strong transferabilities
and robustness to unseen attacks because it often designs a off-to-shelf
purification module and require no extra modifications to the classi-
fier. In Figure 2.13, we present an overall framework of adversarial
purification.

Freeze weights

Classifier

Figure 2.13: The overall framework of adversarial purification.

Problem Setup. Adversarial perturbations can be viewed as im-
perceptible noises added onto clean data. Hence, AP is formalized as a
input-level denoising process to recover clean images from the perturbed
images. In specific, the input is preprocessed by a purifier module fθ

before classification:
min
ϕ,θ

Epdata(x,y)

[
max

x′∈B(x)
L(gϕ(fθ(x′)), y)

]
. (2.3)

Here the preprocessor fθ is often an off-the-shelf generative model that
can restore clean images from attacked images. where L is a loss function,
gϕ is a classifier, x′ ∈ Rd is an adversarial image, y is the true label of
x, d is the data dimension, and B is the maximum allowed perturbation
ball, usually within ℓ∞-norm or ℓ2-norm.

Based on this formulation, the research studies have developed from
two perspectives: (1) improving the robustness by directly incorporating
traditional denoising techniques, (i.e., using Auto-encoder or GAN-based
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purifier; Liao et al., 2018; Samangouei et al., 2018), and (2) preprocessing
the input by utilizing diffusion generative models to denoise adversarial
perturbations (i.e., DiffPure; Nie et al., 2022).

Representation-level Denoising Adversarial Purification
aims to mitigate adversarial perturbations by either removing them from
raw inputs or reconstructing clean latent representations before passing
them to the model for prediction. MagNet deploys a detector-reformer
module to cleanse adversarial perturbations from adversarial inputs
before they reach the network (Meng and Chen, 2017). The detector
identifies potential adversarial examples (AEs) by comparing them to
the distribution of normal samples. Any examples that remain unidenti-
fied are reconstructed by an autoencoder-based reformer, which adjusts
the input to align more closely with the data manifold. The autoencoder
is trained exclusively on clean, legitimate data with reconstruction ob-
jective to ensure it effectively filters out adversarial perturbations while
preserving the core characteristics of the input. Similarly, Liao et al.
(2018) proposes High-Level Representation Guided Denoiser (HGD)
which adopts a U-Net to purify AEs by aligning their high-level repre-
sentations with clean inputs to ensure robust feature extraction. Since
Generative Adversarial Networks (GANs) demonstrate their ability to
generate high-quality images, the concept of DefenseGAN was proposed
to enhance the robustness of deep learning models (Samangouei et al.,
2018). Given an adversarial input, GAN finds a reconstruct input sample
z∗ in its latent space which the process is optimized by the objective:

z∗ = arg min
z

∥x − G(z)∥2
2. (2.4)

Then z∗ is passed to the generator to generate a clean sample that
closes to original data distribution. Differently, Self-supervised Online
Adversarial Purification (SOAP) leverages self-supervised learning tasks
to purify adversarial perturbations by enforcing robust feature repre-
sentations (Shi et al., 2021). This approach combines supervised and
self-supervised signals, achieving competitive robustness while avoiding
computationally expensive adversarial training.

Diffusion-based Adversarial Purification (DBP) leverages
the powerful generative ability of diffusion models to recover clean
images from the perturbed images. Yoon et al. (2021b) first leverages
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score-based generative model to recover clean images from adversarial
inputs. The training objective of the generative model is Denoising
Score Matching (DSM), which aims to estimate the score of original
data distribution (Song and Ermon, 2019). Nie et al. (2022) proposed
DiffPure, the first approach to leverage official diffusion models for ad-
versarial purification. It concludes as two-step purification that involves
first adding Gaussian noises through forward diffusion process to input
images and then denoising the images through reverse diffusion process.
Gaussian noises are larger in scale than adversarial perturbations so
that the forward diffusion process can be viewed as gradually cover-
ing the perturbations. The paper suggests that using a small diffusion
timestep is more suitable for the AP task. This is because adding exces-
sive Gaussian noise during the forward process often results in a loss
of semantic information, which degrades the sampling quality of new
generated clean data. Also, a novel approach Robust Diffusion Classifier
(RDC) directly utilizes diffusion functionality to classify AEs (Chen
et al., 2024a). It operates by first maximizing the data likelihood of
input through a diffusion process and then classifying the optimized
data using the conditional likelihood provided by the diffusion model.
This method capitalizes on the inherent properties of diffusion models
to approximate data distributions accurately across the input space.

Further Discussion. Currently, DBP methods have shown state-
of-the-art performance on adversarial robustness to various adversarial
attacks. However, this area lacks reliable evaluations of DBP methods.
This includes designing strong adaptive attacks against the stochasticity
within diffusion models because the traditional adaptive attack such as
BPDA+EOT attack has been shown as weak in recent work (Lee and
Kim, 2023). Current strong adaptive attack such as PGD+EOT attack
requires iterative optimization steps and each step then contains multi-
ple diffusion function evaluations. Accordingly, evaluating the defense
systems often requires extensive time and resources cost. Furthermore,
DBP methods exhibit the intrinsic problem of accuracy-robustness
trade-off. Specifically, the performance of purifying adversarial images
depends on the selection of timestep t within diffusion models. If the
Gaussian noise is not enough, then adversarial perturbations cannot
be fully removed after the reverse process. Inversely, if the Gaussian
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noise is too much, then the purified samples will lose their original
semantic meanings (i.e., in this case, it is more like generating new
images instead of recovering original images). In the future, research
directions could focus on improving the efficiency and trade-off problem
of DBP methods and designing reliable robustness evaluations.

2.4.2 Adversarial Detection

Adversarial detection (AD) is one of the most lightweight defense strate-
gies, which focuses on identifying whether an incoming sample is from
a clean or adversarial data distribution. AD aims to reject the incoming
sample if it is identified as an AE and the key of it is to distinguish
the discrepancy between AEs and clean samples. One significant advan-
tage of AD is its compatibility with existing machine learning systems.
Specifically, AD can be seamlessly integrated into a machine learning
system with only minor modifications. Furthermore, AD-based methods
mainly focus on identifying and rejecting AEs, leaving the performance
on clean samples nearly unaffected. We present the overall framework
of AD in Figure 2.14.

Detector

Test Samples

Pass the Detection

Reject the Sample

Detected as Adversarial Examples

Detected as Clean Examples

 Detection of Adversarial Examples

Figure 2.14: The overall framework of adversarial detection.

Problem Setup. Formally, AD can be considered as an binary
classification problem. Given a deep neural network (DNN) f : X → Y,
where X denotes the input space and Y denotes the label space, AD
introduces a separate function D : X → {0, 1} to determine whether a
sample x is an AE or an clean sample:

D(x) =

1, if x is an AE,

0, if x is a clean sample.
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Then, x will be rejected if D(x) = 1, i.e., it is identified as an AE.
Research work in AD can be roughly categorized into three main
methods: feature-based adversarial detection, classifier-based adversarial
detection and statistical adversarial detection.

Feature-based Adversarial Detection mainly leverages hidden-
layer features of DNNs to filter out AEs from test data. For example,
Ma et al. (2018) propose to use local intrinsic dimensionality of DNN
features as a detection metric, which quantifies the local geometric
properties around a sample based on the distribution of distances to its
neighbours. Lee et al. (2018) implement a Mahalanobis distance-based
score for identifying AEs. Specifically, their method fits pre-trained DNN
features with class-conditional Gaussian distributions under Gaussian
discriminant analysis, which enables detection without requiring changes
to pre-trained softmax classifiers. Raghuram et al. (2021) propose an
unsupervised framework to detect AEs, which uses a meta-algorithm to
extract intermediate layer representations of DNNs, offering configurable
components for detection. In addition, Deng et al. (2021) transform
the last few layers of a pre-trained DNN into Bayesian layers with pre-
trained model weights. Then, it fine-tunes the Bayesian neural network
to detect AEs by adding uniform noises to samples.

Classifier-based Adversarial Detection is another prevalent
strategy, which involves equipping classifiers with a rejection option.
This approach allows the model to not return predictions on uncertain
inputs. For example, Stutz et al. (2020) introduce a confidence-calibrated
adversarial training (CCAT) framework, which guides the model to
make low-confidence predictions on AEs, thereby determining which
samples to reject. Although CCAT can capture some aspects of pre-
diction certainty, it tends to overestimate the certainty, particularly
on misclassified samples. To mitigate this issue, Pang et al. (2022)
introduce the concept of True Confidence (T-Con), which is defined
as the predicted probability assigned to the true label. T-Con serves
as a certainty oracle, indicating a classifier’s confidence in its correct
prediction. However, since the true label is unknown during inference,
T-Con cannot be directly computed. To address this limitation, they
further propose Rectified Confidence (R-Con), which is derived through
a rectified rejection module trained to predict T-Con based on the input
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and the classifier’s output. R-Con provides an estimate of T-Con, which
can effectively separate AEs out.

Statistical Adversarial Detection has delivered increasing in-
sight recently. Previous methods often train a detector for specific
classifiers or adversarial attacks, and thus tend to overlook the modeling
of data distribution, which can limit their effectiveness against unknown
attacks. Unlike other detection-based defense methods, statistical ad-
versarial detection (SAD) leverages statistical methods to evaluate the
discrepancies between the clean and adversarial distributions. Given the
fact that fundamental discrepancies exist between clean and adversar-
ial distributions, SAD offers statistical guarantees against adversarial
attacks. Besides, SAD-based methods are effective against adaptive
attacks. The philosophy behind this is that, to mislead a SAD-based
detector into identifying AEs as clean samples, an adaptive attack must
generate samples that can narrow the distributional discrepancy be-
tween clean samples and AEs. Thus, this process can indeed align AEs
closer with clean samples, making the adaptive attack harder to mislead
a well-trained classifier.

One typical example of statistical adversarial detection is Gao et al.
(2021), which demonstrate that maximum mean discrepancy (MMD)
(Gretton et al., 2012) is aware of adversarial attacks. Specifically, they
replace the Gaussian Kernel with an effective deep kernel with a maxi-
mized testing power. Then, they apply wild bootstrap to overcome the
issue that AEs may be non-independent. Finally, their proposed MMD
statistic can effectively distinguish the discrepancies between AEs and
clean samples. Based on this, Zhang et al. (2023d) further propose a
new statistic called expected perturbation score (EPS) that measures the
expected score of a sample after multiple perturbations. The philosophy
is to perturb samples by injecting various noises, and therefore can
extract information from its diverse multi-view observations. Then, an
EPS-based MMD is proposed to measure the distributional discrepancy
between clean samples and AEs.

Further Discussion. Feature-based and classifier-based adversar-
ial detection often generalize poorly to unseen attacks. On the other
hand, statistical adversarial detection can mitigate this issue by con-
sider the distribution information of AEs and clean samples. However,
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SAD-based defense methods require processing data in batches during
inference. When the batch size is too small or contains a mix of AEs
and clean samples, the stability of the detector can be affected. To
mitigate this issue, future research could explore more robust statis-
tical methods capable of detecting distributional discrepancies with
fewer samples. One key advantage of applying a statistical hypothe-
sis test is its ability to effectively control the false alarm rate. Fang
et al. (2022b) theoretically demonstrate that for single-instance-based
detection to function perfectly, there must be a gap in the support
set between in-distribution (IID) and out-of-distribution (OOD) data.
This principle can be extended to adversarial settings. However, such a
gap in the support set does not exist in adversarial settings, making
perfect single-instance-based detection generally infeasible in adversarial
scenarios.

2.4.3 Adversarial Training

Adversarial training (AT) has emerged as a foundational framework to
improve the robustness of DNNs against adversarial attacks. Its core
idea lies in generating AEs during training and use the generated AEs to
train the DNN, forcing the model the learn the underlying distribution
of AEs (Madry et al., 2018). By effectively addressing the vulnerabilities
of DNNs, AT has been widely applied in many real-world applications
such as autonomous driving systems (Shibly et al., 2023), medical image
segmentation (Hanif et al., 2023) and anomaly detection (Zhu et al.,
2022). We present the overall framework of AT in Figure 2.15.

Problem Setup. Mathematically, AT can be formalized as a min-
max optimization problem. Specifically, the inner maximization gener-
ates AEs by solving the following constrained optimization problem:

max
∆

ℓ(f(x + ∆), y), subject to ∥∆∥p ≤ ϵ, (2.5)

where ℓ is a loss function, f is a model, x ∈ Rd is a natural image, y is
the true label of x, ∆ ∈ [−ϵ, ϵ]d is the adversarial perturbation added to
x, ∥ · ∥p is the ℓp-norm, d is the data dimension, and ϵ is the maximum
allowed perturbation budget. The outer minimization optimizes the
model weights to correctly classify generated AEs:
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Figure 2.15: The overall framework of adversarial training.

min
f∈F

1
n

n∑
i=1

ℓ(f(xi + ∆∗
i ), yi), (2.6)

where x̃i = xi +∆∗
i is the most adversarial variant of xi within the ϵ-ball

centered at xi, ∆∗
i ∈ [−ϵ, ϵ]d is the optimized adversarial perturbation

added to xi by solving (2.5), yi is the true label of xi, ℓ is a loss function,
and F is the set of all possible neural network models.

Based on the above formulation, the research studies aim to develop
AT from two key perspectives: (1) improving the inner maximization
by refining the generation process of AEs (i.e., generation-refined AT),
and (2) improving the outer minimization by refining the optimization
process of the model (i.e., optimization-refined AT).

Generation-refined Adversarial Training aims to improve the
inner maximization in (2.5) (e.g., improve the quality of generated AEs
or simplify the generation process). One intuitive approach is to enhance
the strength of adversarial attacks. For example, vanilla AT (Madry
et al., 2018) propose to iteratively optimize the inner maximization,
which outperforms the previously proposed one-step attack (Goodfellow
et al., 2015) by a notable margin. However, this will lead to an inevitable
increase in computational complexity, making vanilla AT a resource-
consuming approach. To mitigate this issue, another line of research
focuses on efficient AT methods. For example, Shafahi et al. (2019) in-
troduce a method to accelerate the generation of AEs by simultaneously
updating both the model parameters and adversarial perturbations
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in a single backward pass, eliminating the need for separate gradient
computations at each step. Wong et al. (2020) propose to integrate
random initialization into the AT framework. This approach allows AEs
generated by a one-step attack to achieve comparable effectiveness to
those generated by iterative attacks, while at the same time, significantly
reducing the computational cost.

Besides random initialization, incorporating other perturbation ini-
tialization techniques such as learnable initialization (Jia et al., 2022b)
and knowledge-driven initialization (Jia et al., 2022a) can also enhance
the data diversity of AEs. In addition, another line of research focuses
on adjusting the attack intensity. For example, Liu et al. (2020a) point
out that large perturbation budgets can result in suboptimal perturba-
tion initializations. Based on this, they propose a periodic adversarial
scheduling strategy to dynamically adjusts the maximum allowed per-
turbation budgets during training. More recently, Zhang et al. (2024a)
observe that different pixels contribute differently to adversarial robust-
ness and standard accuracy. Base on this observation, they propose to
pixel-wisely adjust maximum allowed perturbation budgets during the
generation of AEs, which aims to guide the model to focus on important
pixel regions during training.

Optimization-refined Adversarial Training aims to improve
the outer minimization in (2.6) (e.g., improve the design of objective
functions). For example, Zhang et al. (2019) propose to optimize a
regularized surrogate loss function, which captures the trade-off between
the adversarial robustness and standard accuracy. Wang et al. (2020b)
investigate the impact of misclassified samples on the model performance.
They discover that misclassified samples can significantly affect the
adversarial robustness. Based on this observation, they propose a new
loss function to include a distinct differentiation of misclassified samples
through regularization. Wu et al. (2020) find that there is a positive
correlation between the model weight flatness and robust generalization
performance. To improve this flatness, they propose to regularize the
flatness of weight loss landscape by adding adversarial perturbations to
model weights. Another line of research studies focus on reweighting
AEs (i.e., assign different weights to different AEs). For example, Ding
et al. (2020) propose to assign instance-dependent maximum allowed
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perturbation budgets ϵ to AEs. Zhang et al. (2021d) propose a geometry-
aware instance-reweighted AT (GAIRAT) framework, which assigns
different weights to adversarial loss based on the distance of data
points from the decision boundary. However, GAIRAT uses discrete
and path-dependent metrics to measure the closeness, which makes it
computationally unstable. To mitigate this issue, Wang et al. (2021b)
propose to use probabilistic margins to reweight AEs due to their
continuous and path-independent nature.

Further Discussion. Despite the success of AT in defending against
various adversarial attacks, there are still numerous open questions that
need to be addressed. For example, improving adversarial robustness
will lead to a notable decrease in standard accuracy, affecting the
performance of AT-based methods on clean samples.

In the future, research directions could involve developing AT meth-
ods that could improve standard accuracy without sacrificing adversarial
robustness. For example, aligning the distribution of AEs towards the
direction of the distribution of clean samples, while at the same time,
maximizing the cross-entropy loss during the generation of AEs might
be a possible solution. The intuitive philosophy is to create AEs that
are closer to the distribution of clean samples.

2.4.4 Adversarial Overfitting

While adversarial training (AT) is widely recognized as the most reli-
able training paradigm against adversarial attacks, the phenomena of
robust overfitting (RO) (Rice et al., 2020) and catastrophoic overfitting
(CO) (Wong et al., 2020) in both single-step and multi-step AT have
emerged as critical bottlenecks, fundamentally limiting the continuous
progression of model robustness. Consequently, a series of studies have
been conducted with the aim of mitigating adversarial overfitting to
overcome these inherent performance bottlenecks and further enhance
AT’s scalability and practicality.

Problem Setup. Distinct from (benign) overfitting in natural train-
ing, where over-learning on the training set can still result in good test
performance, RO manifests as a continuous degradation of robustness
on the test adversarial examples during extended multi-step AT. Be-
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sides, unlike conventional data overfitting, CO is characterized by a
paradigm overfitting in which the model’s robustness against single-step
adversarial attacks (training paradigm) abruptly rises to nearly 100%,
while its defense against multi-step adversarial attacks (test paradigm)
simultaneously collapses from peak to nearly 0%. Moreover, both RO
and CO exhibit distinct features of decision boundary distortion. RO
leads to significant decision boundary distortion; although the model
can correctly classify perturbed training data, it remains vulnerable
to adversarial examples generated from test data. CO results in se-
vere decision boundary distortion, achieving flawless classification on
perturbations generated by the single-step adversarial attacks, such as
FGSM (Goodfellow et al., 2015), but becoming completely vulnerable
to adversarial examples generated through the multi-step adversarial
attacks, such as PGD (Madry et al., 2018). We illustrate the phenomena
of RO and CO in Figure 2.16.
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Figure 2.16: The phenomena of robust and catastrophic overfitting.

Robustness Overfitting. Rice et al. (2020) initially demonstrates
that conventional remedies for natural overfitting have limited effec-
tiveness in addressing RO. To mitigate model overfitting on adversarial
examples, Schmidt et al. (2018) theoretically and empirically shows that
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leveraging larger training datasets can substantially alleviate robust
overfitting. Following this direction, Carmon et al. (2019) leverages
semi-supervised learning with vast amounts of unlabeled data to mit-
igate RO, as well as circumventes the labor-intensive manual annota-
tion. Recently, Li and Spratling (2023) suggest that simply extending
the training dataset through sophisticated data augmentation strate-
gies can effectively eliminate RO. Distinct from the aforementioned
approaches, another line of research focuses on understanding the un-
derlying mechanisms of robust overfitting and mitigating it without
relying on additional training data. As a pioneering study, Chen et al.
(2020b) demonstrates that injecting weight smoothing during multi-step
adversarial training provides an effective approach to mitigate RO. Fol-
lowing this, Wu et al. (2020) identifies a positive correlation between
the distorted weight loss landscape and the occurrence of RO and cor-
respondingly proposes incorporating adversarial weight perturbation to
flatten the model’s landscape under the worst-case scenarios. Yu et al.
(2022) further reveal that RO is caused by optimizing small-loss adver-
sarial examples, and demonstrated that applying weight perturbation
solely to the small-loss subset can reliably prevent its occurrence. From
the perspective of minimax optimization, Wang et al. (2023f) suggests
that improving attack strength can rebalance the minimax game and
mitigate RO.

Catastrtophic Overfitting. Wong et al. (2020) first identifies the
phenomenon of CO, and empirically indicates that existing counter-
measures designed to alleviate natural overfitting and RO are entirely
ineffective in addressing CO. As a result, Wong et al. (2020) proposes
using large-magnitude initialization and early stopping to avoid CO,
and Jorge Aranda et al. (2022) further enhance this approach by employ-
ing aggressive initialization and unbounded adversarial perturbations.
However, Andriushchenko and Flammarion (2020) demonstrate that
the above methods merely delay the onset of CO rather than reli-
ably preventing it, particularly when confronted with more challenging
scenarios, such as stronger adversaries. To effectively mitigate CO, An-
driushchenko and Flammarion (2020) proposes explicitly maximizing
gradient alignment within the perturbation set to avoid nonlinear deci-
sion boundaries around adversarial examples and prevent CO. Moreover,
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several studies have identified the relationship between distorted de-
cision boundaries and fixed single-step perturbation size, leading to
proposals for either instance-dependent perturbation sizes (Huang et al.,
2023b) or reduced perturbation magnitudes for successfully misclassified
adversarial examples (Kim et al., 2021).

Recently, Lin et al. (2023a) observes the existence of abnormal ad-
versarial examples within single-step adversarial training, where their
associated loss paradoxically decreases after adding adversarial perturba-
tions. Based on this, Lin et al. (2024b) further reveals a vicious cycle be-
tween the optimization of abnormal adversarial examples and the extent
of model distortion and proposes a regularization term designed to sup-
press the generation of these abnormal examples. Subsequent research
demonstrates that different model layers undergo distinct changes during
CO, with earlier layers exhibiting greater sensitivity due to the formation
of pseudo-robust shortcuts. Specifically, the model’s reliance on pseudo-
robust shortcuts for decision-making, while enabling precise defense
against single-step adversarial attacks, bypasses genuine robustness
learning, ultimately leading to decision boundary distortion and trigger-
ing CO. As a solution, Lin et al. (2024b) propose layer-aware adversarial
weight perturbation, which applies stronger penalties to earlier layers
to mitigate the model’s stubborn reliance on pseudo-robust shortcuts.

Further Discussion. Despite success in separately addressing nat-
ural overfitting, RO, and CO, the solutions for these overfitting types
remain isolated from each other. Therefore, developing a unified un-
derstanding and providing a universal solution for different types of
overfitting represents a promising research direction. As a pioneering
effort, from the perspective of memorization effects, Lin et al. (2024a)
reveals shared over-memorization behavior among these three types of
overfitting and proposes a preliminary general solution. Furthermore,
although some pilot studies have been conducted (Li and Li, 2023),
theoretical explanations for RO and CO remain relatively scarce. This
scarcity significantly limits our understanding of their underlying mecha-
nisms. Finally, exploring RO and CO under different ℓp-norms, such as ℓ1
and ℓ0, emerges as an important avenue for future investigation (Zhong
et al., 2023).



3
Trustworthy Private and Secured Learning

The rapid advancement of machine learning technologies has brought
unprecedented capabilities to data analysis and decision-making pro-
cesses, yet it has simultaneously raised critical concerns about privacy
and security. Trustworthy private and secured learning has emerged as
a crucial research direction that aims to develop learning systems that
not only achieve high performance but also provide robust guarantees
for data privacy, model security, and result reliability. This field inte-
grates various privacy-preserving techniques, such as differential privacy,
federated learning, and secure multi-party computation, to ensure that
sensitive information remains protected throughout the learning process.
At the core of trustworthy private and secured learning lies the challenge
of balancing the trade-offs between model utility, privacy preservation,
and security guarantees.

This section constructs a dynamic framework of adversarial evo-
lution, tracing the spiral development of privacy-preserving machine
learning through iterative cycles of vulnerability exposure to defense
enhancement. Figure 3.1 provides an overall framework of this section.
Section 3.1 establishes differential privacy not as an endpoint but as the
opening move in this technological arms race. While its noise injection
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Figure 3.1: The overall framework of trustworthy private and secured learning.

mechanism obscures individual data traces, it inadvertently fuels the
rise of membership inference attacks in Section 3.2. This countermeasure
exposes the insufficiency of isolated noise mechanisms, forcing differen-
tial privacy to evolve from merely output protection to holistic training
process safeguards, creating an adaptive defense loop. As surface-level
protections mature, Section 3.2 reviews model inversion attacks that
mark a tactical escalation: adversaries leverage model memory of train-
ing data to reconstruct raw sensitive information from gradients or
prediction confidence scores. This shifts privacy risks from “exposure
of data participation” to “reconstruction of data content”, compelling
defenses to hybridize differential privacy with model regularization,
balancing noise injection and feature compression. Section 3.4 presents
data poisoning attacks transit from passive observers to active saboteurs,
corrupting training data to manipulate model behavior. This paradigm
shift demands defenses pivot from post-hoc mitigation to preventive
hardening, integrating robust optimization to build immune barriers in
training pipelines. Section 3.5 introduces machine unlearning then ex-
tends defenses across the temporal dimension, which can erase harmful
data influence in training and also can realize regulatory mandates like
the “right to be forgotten.” Section 3.6 explores the protection methods
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for the intellectual property of model owners from the perspective of
reshaping the generalization abilities. Finally, Section 3.7 discusses fed-
erated learning that compounds all prior challenges into a distributed
framework. This synthesis propels privacy preservation from fragmented
techniques toward systemic, architecture-level solutions.

3.1 Differential Privacy

In an era where data-driven technologies permeate every facet of so-
ciety, ensuring the privacy and security of individual information has
become paramount. Differential privacy emerges as a rigorous mathe-
matical framework that enables the analysis and sharing of data while
safeguarding individual identities (Dwork et al., 2006). By introducing
carefully calibrated randomness into data outputs, differential privacy
ensures that the inclusion or exclusion of a single data point does not
significantly affect the overall analysis, thereby protecting personal in-
formation. This framework is particularly impactful in machine learning,
where it allows models to learn from sensitive datasets while maintaining
robust privacy guarantees.

Differential privacy is defined in the following context. Given a
database X of size n, an adversary may query the data via a functionf :
Xn → Y , with the data being managed by a trusted mechanism M

that maps Xn to Y to ensure privacy. Formally, an algorithm M is said
to satisfy (ϵ, δ)-differential privacy if, for any two neighboring databases
X and X ′ that differ by at most one entry (i.e., ∥X − X ′∥0 ≤ 1), and
for any subset S ⊆ Y , the following inequality holds:

Pr[M(X ) ∈ S] ≤ eϵ Pr[M(X ′) ∈ S] + δ, (3.1)

where ϵ and δ control the privacy guarantees. Specifically, if δ = 0, the
mechanism is considered ϵ-pure differentially private. For δ > 0, the
mechanism is approximately private, allowing for a small probability
(1 − δ) of violating strict privacy. This definition ensures privacy by
comparing the outputs of two “neighboring” databases, requiring the
mechanism M to be “stable” over all possible inputs in Xn. In most cases,
the “neighboring” property is measured using the Hamming distance
(ℓ0-norm), though other metrics can apply depending on context.
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Differential Privacy Mechanisms. In practice, many fundamen-
tal mechanisms are used to implement differential privacy by adding
well-calibrated noise to data responses. The primary objective of these
mechanisms is to protect individual data privacy while minimizing accu-
racy loss in results. (1) Laplace Mechanism. This mechanism is based on
the Laplace distribution, defined as Lap(b) = 1

2bexp(− |x|
b ). For a given

function f : Xn → Rk, the Laplace mechanism adds independently
generated noise to each output component of f(X) to achieve privacy:

Mϵ(x) = f(x) + (Y1, Y2, . . . , Yk), (3.2)

where each Yi is an independent and identically distributed (i.i.d.) ran-
dom variable drawn from the Laplace distribution i.e., Yi ∼ Lap(∆(f)

1 /ϵ),
and ∆(f)

p = maxX ,X ′:∥X −X ′∥0≤1 ∥f(X ) − f(X ′)∥p denotes the lp sensitiv-
ity. This mechanism guarantees (ϵ, 0)-differential privacy by ensuring
that small changes in the input data produce statistically indistinguish-
able outputs, thus preserving privacy (Dwork and Roth, 2014). (2)
Gaussian Mechanism. The Gaussian mechanism is suitable for functions
f : Xn → Rk with ℓ2-sensitivity ∆(f)

2 . Like the Laplace mechanism, it
introduces noise to each output component of f(X), which is drawn
from a Gaussian distribution rather than a Laplace distribution. The
Gaussian mechanism provides (ϵ, δ)-differential privacy, which is par-
ticularly useful for high-dimensional data queries where the ℓ2-norm
provides better stability than the ℓ1-norm (Dwork and Roth, 2014).

In high-dimensional settings (k ≫ 1), the Gaussian mechanism is
advantageous as it scales with the square root of the dimension, offering
a more controlled privacy-accuracy tradeoff. (3) Exponential Mechanism.
For functions with discrete outputs, the Exponential Mechanism is ideal.
It is widely applied in scenarios where the goal is to select an output
from a finite set while maintaining privacy. Suppose we have a dataset of
n individuals X ∈ Xn, a finite set of possible outputs H, and a scoring
function s : Xn × H → R that measures the relevance of each outcome
h ∈ H with respect to the data X. The Exponential Mechanism selects
an outcome h with a probability proportional to exp(ϵs(X, h)/2∆s),
where ∆s is the sensitivity of the scoring function s. This mechanism
ensures differential privacy by favoring outcomes with higher scores
while maintaining privacy protection across possible outcomes.
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Currently, the risk of privacy breaches is exposed due to the per-
vasive application of machine learning technologies in privacy-related
applications, which necessitates using privacy-sensitive datasets to train
models. Recent research has demonstrated that machine learning models
are susceptible to a variety of privacy attacks, including model inver-
sion (Fredrikson et al., 2015) and membership inference attacks (Shokri
et al., 2017). These attacks are conducted by adversaries who endeavor
to extract sensitive information that data proprietors are unwilling
to disclose. Consequently, it is imperative to implement deep learning
techniques that prioritize privacy. These techniques are intended to
safeguard the sensitive information in training data or models during
the learning process. In this context, we investigate the application of
differential privacy to machine learning models, which is fundamentally
accomplished by introducing perturbations to the training data, models,
or intermediate results and outputs. As shown in Figure 3.2, input
perturbation, output perturbation, objective perturbation, and gradient
perturbation are the four strategies in private machine learning.

Figure 3.2: Noise perturbation approaches in differentially private machine learning:
(a) input perturbation, (b) output perturbation, (c) gradient perturbation, (d)
objective perturbation.

Input-based perturbation approaches. Fukuchi et al. (2017)
proposed the first differential private empirical risk minimization (ERM)
framework that was based on input perturbation. This mechanism in-
volves data proprietors introducing noise to their data prior to transmit-
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ting it to data collectors. The perturbed data is then utilized to train a
public model. Nevertheless, the utility of the model can be substantially
influenced by changes in feature values, as it necessitates the extraction
of information from the training data.

Output-based perturbation approaches. Lecuyer et al. (2019)
introduced the earliest output-based perturbation method, which is in-
tended for private regularized empirical risk minimization. This method
has been extensively employed in neural networks for training on large-
scale datasets by injecting noise into the second-to-last layer of the model
to produce a differentially private noisy layer. The privacy-preserving
property is maintained in the final layer of the model, as per the post-
processing theorem of differential privacy. Subsequently, Phan et al.
(2019) investigated the sensitivity of models and evaluated the trade-off
between privacy preservation and model utility.

Objective-based perturbation approaches. The initial concen-
tration of this approach was on machine learning models, such as logistic
regression, as proposed by Chaudhuri and Monteleoni (2008). Subse-
quently, Kifer et al. (2012) offered a more sophisticated and efficient
analysis, which enhanced the output perturbation mechanism to ensure
more robust privacy guarantees. This was accomplished by reducing
the noise and relaxing the differentiability requirement for the regular-
izer, which thereby broadened its applicability to problems with rigid
constraints. In subsequent research, Phan et al. (2016) expanded the
model to include private deep autoencoders and probabilistic generative
models, such as private deep belief networks, which were approximated
using Taylor and Chebyshev expansions. In these investigations, the
training objective’s polynomial form was perturbed. More recent stud-
ies, such as Iyengar et al. (2019), have proposed an approximation to
the minima perturbation method, as earlier works made significant
assumptions about the loss function. Under standard assumptions, this
procedure is applicable to all objective functions and ensures (ϵ, δ)-DP,
regardless of whether the model output is a true minimum of the noisy
objective function. This work demonstrates that achieving an approxi-
mate minimum of the objective function is sufficient to assure privacy
guarantees, thereby making objective perturbation more feasible in
random convex optimization settings. Nevertheless, these publications
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continue to impose convexity assumptions on the loss function. While
working with a discrete domain, Neel et al. (2020) relaxed these as-
sumptions, necessitating only that the loss function be bounded. The
authors necessitated that the loss function be Lipschitz continuous with
regard to its parameters for continuous domains.

Gradient-based perturbation approaches. Gradient perturba-
tion is an additional prevalent approach to differentially private machine
learning, which entails the incorporation of noise into gradient descent.
Noise gradient descent, which applies stochastic gradient descent (SGD)
to convex loss functions and L2-regularized objectives, was introduced
by Song et al. (2013) in pioneering work. Starting from this, Abadi et al.
(2016) created the DP-SGD algorithm for the private training of deep
models. Gaussian noise is incorporated into the truncated gradients in
this method to safeguard the privacy of the data. Additionally, the pri-
vacy loss is monitored using the moments accountant, a robust privacy
loss accounting method that establishes precise limits that surpass the
capabilities of sophisticated composition theorems. The initial dynamic
privacy budget allocation strategy was developed by Lee and Kifer
(2018) in order to reduce the consumption of the privacy budget while
ensuring the performance of the model. A portion of the privacy budget
is allocated to calculate the perturbed gradient during each iteration
in this strategy, while the remaining portion is used to optimize the
step size using a differentially private noise minimization algorithm.
This guarantees that the allocation’s efficacy is not compromised by
the perturbations that are incorporated into the gradient.

Xie et al. (2021) observed that the gradient value (and consequently
its norm) is inversely proportional to the number of iterations, resulting
in variable privacy leakage risks across iterations. The privacy budget is
typically distributed equitably among iterations in the majority of DP-
SGD implementations. Increasingly precise documentation of gradient
values is required as training progresses and gradients tend to decrease.
In order to resolve this issue, they suggested an adaptive noise-reducing
algorithm for DP-SGD that adaptively allocates a portion of the privacy
budget to each iteration. The practical challenge of applying techniques
such as DP-SGD to large-scale models, such as neural networks, persists.
Yu et al. (2021) devised a method to reduce memory costs in order
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to make this more feasible. This was accomplished by modifying the
representation of gradient vectors/matrices and weights, which led to a
correspondingly modified gradient perturbation algorithm.

Further Discussion. (a) Scalability and Efficiency: Examine the
computational obstacles linked to the application of differential privacy
in extensive machine learning models and explore various strategies to
improve efficiency. (b) Examining the continuing research focused on
balancing the balance between upholding stringent privacy regulations
and ensuring the usability of machine learning models. (c) Regulatory
Compliance and Standardization: Analyze the function of differentiated
privacy in fulfilling legal obligations for data protection and the ini-
tiatives aimed at creating consistent standards across various sectors.
(c) Progress in Differential Privacy Techniques: Emphasize novel ap-
proaches and instruments aimed at enhancing the efficacy and relevance
of differential privacy across diverse machine learning scenarios.

3.2 Membership Inference Attacks

Machine learning, a data-dependent training model, has recently gar-
nered widespread attention due to its high accuracy and capacity to
handle complex tasks. More and more trained machine learning models
have been used in people’s lives or industries. However, the data-driven
training process and the heavy use of models inevitably give rise to
many data-related issues. Among these, the most commonly discussed
problems typically revolve around training data privacy concerns and
data copyright infringement issues. In these situations, membership
inference attacks(MIAs) is a useful technology to monitor the illegal
data used during the training step of a model, but also a good evaluation
method to measure the model’s security regarding the data. Specifically,
MIA aims to identify which data were used as training data (i.e., mem-
ber data) to train the target model, while data that were not used for
training are classified as non-member data. Whether data was used to
train the target model is also referred to as membership attribution.
The general process of MIA is shown in Figure 3.3. MIA can be roughly
divided into two types: one is the more precise but computationally
intensive detection method based on model behavior; the other is the
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Figure 3.3: The main process of Membership Inference Attack (MIA) involves an
attacker determining whether a specific image was part of the training dataset used
by the model trainer to train the target model.

less resource-consuming but less accurate detection method based on
model output. All in all, MIA is a problem that is often used to deal
with model data, but currently has some limitations.

Problem Setup: A basic membership inference attack is conducted
under the condition where a trained model and a candidate dataset are
provided. The goal is to identify the training data from the candidate
dataset. The traditional MIA problem can be defined as follows:

Given a pre-trained model fθ parameterized by weight θ and candi-
date dataset D = {x1, x2, x3..., xn}. A part of the candidate dataset Dm

is the training data for the model fθ. The remaining part of the dataset
Dn is the hold-out set. MIA assesses each xi and assigns a membership
attribute mi to it. Where mi = 1 if xi ∼ Dm; otherwise mi = 0. An
MIA algorithm MIA is designed to predict whether or not xi is in Dm:

MIA(xi, θ) =
{

1, P (mi = 1|θ, xi) ≥ τ

0, P (mi = 1|θ, xi) ≤ τ
(3.3)

where MIA(xi, θ) = 1 means xi is identified as member data(comes
from Dm), τ is the threshold. The pre-trained model we want to attack
is denoted as θ.
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MIA based on model behavior differences (behaviors based
MIA) is one of the primary principles behind current membership
inference attacks (MIA) The key idea is that whether a specific data is
part of the training dataset influences the behavior of the target model
when the model processes these data (or data similar to it) (Niu et al.,
2024).

This type of MIA method leverages these behavioral differences to
infer the membership attribution of the target model. Specifically, this
method involves randomly sampling multiple subsets from a candidate
dataset and training several reference models (shadow models) using
these subsets (Liu et al., 2022a). For a given data x in the candidate
dataset, this process allows us to obtain a group of models where x

is part of the training set and another group of models where x is
not included in the training set. Based on these models, the goal is
to estimate the parameter probability distribution of models trained
on datasets that include the data point x, denoted as P (θ|x), and the
parameter probability distribution of models trained on datasets that do
not include x, denoted as P (θ|x′), where x′ represents the case where x
is not in the training set (Carlini et al., 2022). However, since calculating
the parameter distributions directly is challenging, most methods use
the loss function l(f(x), y) as a proxy for the model parameters. Here,
l represents the loss function of the model when evaluated on data x

with the corresponding label y (Carlini et al., 2022).
This method was first proposed by Liu et al. (2022a), establishing the

foundational principles for behavior-based MIA. However, this method
clearly has two significant limitations. First, repeatedly training shadow
models is highly resource-intensive, so this approach can only be used
to attack models with simple structures handling straightforward tasks.
Second, the accuracy of this method is closely tied to the structure of
the shadow models; the shadow models need to have a structure similar
to the target model to achieve better results.

To address these shortcomings, many improved methods have been
proposed. LiRA (Carlini et al., 2022) introduced the idea of treating
P (l(f(x), y)|x) as a normal distribution, which allows estimation of
P (l(f(x), y)|x) with only a small number of shadow models (at least
four). Furthermore, the research pointed out that previous studies used
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“accuracy” as the evaluation metric while neglecting the importance
of the false positive rate (Carlini et al., 2022). These metrics do not
reflect whether the attack can confidently identify any member of the
training set. Therefore, the paper proposed that MIA methods should
be evaluated based on their true positive rate at low false positive rates
(e.g., ≤ 0.1%) and found that most previous attacks perform poorly
under this criterion (Carlini et al., 2022). Before this, many previous
methods showed poor performance on this metric. The study introduced
the Likelihood Ratio into the algorithm. By calculating (3.4), the above
shortcomings can be addressed,

Pr(θ|x)
Pr(θ|x′) . (3.4)

The improvements to the algorithm and evaluation metrics have
made this method an important benchmark in the field. Furthermore,
to address the issue of poor performance in black-box network attacks,
L-leak (Yan et al., 2022) proposed that it is not necessary to use shadow
models with the same structure as the target model for membership
attribution detection. Instead, logical constraints can be introduced
during the training of shadow models (which may not have the same
structure as the target model) to ensure that the shadow models exhibit
“roughly similar” behavior to the target model at a logical level (Yan
et al., 2022) .

In simple terms, the Figure 3.4 illustrates the target model’s output
structure for a specific image, with the detection result being 2 (75%
confidence). The model’s logits suggests that the image is most likely 5,
and unlikely to be 1 and 7. The trained shadow model must adhere to
this basic logits when detecting the image but does not need to match
the exact confidence level. This approach removes structural constraints
when training shadow models, addressing scenarios where the target
model is a black box. It also allows for the use of simpler structures to
attack more complex models, thereby reducing resource consumption.

Recently, Gradient-Leaks (Liu et al., 2023a) transformed the process
of training multiple full shadow models into constructing a single local
ML model (Liu et al., 2023a). By leveraging the differences in observed
gradients of the local model, it determines membership information.
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Figure 3.4: The L-Leak method constructs a reference model that mimics the
behavior of the target model based on its logits. In this example, the model’s logits
indicate that the image is most likely to be a 5 and least likely to be a 1 or 7.

Since training a local ML model requires significantly less time com-
pared to a full model, this method can save substantial computational
resources.

The latest state-of-the-art method, RMIA (Zarifzadeh et al., 2024),
further minimizes the need for shadow models. With this approach,
membership inference can be accomplished with the assistance of just
one shadow model. Current methods require a large number of shadow
models because they need to estimate P (θ|x) and P (θ|x′). In RMIA,
building on LiRA, the problem is transformed into function (3.5),

P (θ | x) = P (x | θ)P (θ)
P (x) . (3.5)

In this way, there is no need to directly calculate P (θ|x). Instead,
P (x) can be computed as the empirical mean of P (x|θ′) by sampling
shadow models θ′ (Zarifzadeh et al., 2024). Using this approach, even
with just one shadow model, it is still possible to estimate P (x). The
experiments in the paper demonstrate that this method significantly
outperforms previous approaches, especially in resource-constrained
scenarios.

Output-Based MIA (Loss-Based MIA) is a type of membership
inference attack with fewer constraints compared to the behavior-based
MIA methods. The basic principle of this approach is to leverage the
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tendency of model over-fitting on training data for membership attri-
bution detection. During training, models often over-fit their training
data, so when handling a member data, the model typically returns
a result with lower loss compared to non-member data. By observing
the difference in loss between member and non-member data, mem-
bership inference attacks can be performed (Yeom et al., 2018). This
type of method is often used to attack models that behavior-based MIA
cannot handle, such as generative models. While behavior-based MIA
has addressed issues like high resource consumption and the inability
to attack black-box models over the years, there are still tasks where
behavior-based MIA is not applicable.

For instance, when training generative models, the input is typi-
cally random noise, which is usually not recorded after training. This
makes it impossible to access inputs consistent with the training phase
during MIA attacks on generative models, thus preventing the train-
ing of shadow models. Additionally, for models like diffusion models,
which require substantial resources during training, even training one
additional shadow model during the attack phase incurs unacceptable
resource consumption. In such cases, loss-based MIA is more suitable
than behavior-based MIA. The use of over-fitting tendency for mem-
bership inference was first proposed in Yeom et al. (2018). However,
this method did not consider the varying difficulty of the model in
processing different data, resulting in poor detection performance.

Take image classification models as an example: Some images are
inherently harder to classify, while others are easier to determine. For
data that are difficult to distinguish, even if it belongs to the target
model’s training set, the model will exhibit higher losses when processing
it. In contrast, for easily distinguishable images, even if they do not
belong to the target model’s training set, they are still easy to classify.
To address this issue, many studies have combined loss-based MIA
with behavior-based MIA (Ye et al., 2022; Ye et al., 2023). With the
emergence of generative adversarial models (GANs) (Wang et al., 2017),
loss-based MIA found its most suitable application scenario. LOGAN
(Hayes et al., 2017) was the first to propose membership inference attacks
(MIA) targeting GANs. However, this method does not directly attack
the GAN itself, but rather its discriminator (Hayes et al., 2017). Since the
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discriminator in a GAN is a simple image classification model tasked
with distinguishing between real and generated images, its training
process does not involve random noise. Therefore, LOGAN adopted the
principles of behavior-based MIA to implement its attack.

Subsequently, a more general method, GAN-Leak (Chen et al.,
2020a), was proposed, which examines membership attribution through
the loss differences when generating target data. GAN-Leak posits that
generative models tend to produce better results for member image data
than for non-member image data. With its simplicity, good performance,
and flexibility in deployment, GAN-Leak established the foundational
principles and baseline for loss-based MIA targeting generative models
(Duan et al., 2023; Fu et al., 2024; Fu et al., 2023).

With the advent of diffusion models (Croitoru et al., 2023), Duan
et al. (2023) were the first to propose using the loss differences in
intermediate denoising steps of diffusion models to distinguish between
member and non-member data. Their method extended the principles of
GAN-Leak, suggesting that when a diffusion model attempts to generate
member image data, the intermediate noise prediction loss is smaller
than that for non-member image data.

Building on this, SecMI (Duan et al., 2023) re-modeled the training
steps to more accurately replicate the original model’s forward and
backward processes, thereby improving detection accuracy. Additionally,
other methods have explored adding noise to target images and letting
the model reconstruct the images to determine whether the model retains
memory of those images, thus verifying their membership attribution
(Fu et al., 2024).

Further Discussion. With the development and widespread ap-
plication of various machine learning technologies, data security has
become a critical research issue. However, existing methods still face
significant limitations in many scenarios and problems. For instance,
can current MIA (Membership Inference Attack) methods effectively
detect data usage issues in teacher models when only the distilled stu-
dent models are accessible? Furthermore, although there has been some
research on MIA for large models, these studies have faced considerable
skepticism. Many researchers argue that current MIA studies on large
models involve unrealistic experimental setups that do not align with
the real-world training processes of large models.
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3.3 Model Inversion Attacks

Model inversion attacks (M-Inverse1) are a type of privacy attack in
which adversaries use a trained machine learning model to extract pri-
vate information from its training data. The goal of M-Inverse is to
recreate representative features of the inputs used in model training, as
shown in Figure 3.5. M-Inverse, which was first introduced on shallow
models by Fredrikson et al. (2014), have since evolved to address deep
neural networks. M-Inverse uses prior knowledge and specific attack
techniques to reconstruct different types of input data. M-Inverse has
been studied in a variety of machine learning domains, including com-
puter vision, natural language processing (NLP), and graph learning. In
computer vision, adversaries often target classification models with the
goal of inferring class-specific private information. M-Inverse in NLP
aims to recover sensitive training texts, whereas M-Inverse in graph
learning aim to infer the topology or edge connectivity of the graph.
The methodology and effectiveness of M-Inverse are shaped by their
domain-specific characteristics.
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Figure 3.5: General framework of model inversion attack.

Problem Setup. M-Inverse is the process of inverting a well-trained
machine learning model to extract private information about its training
data. Specifically, given a trained model M(·) and prior knowledge K,

1In the previous section, MIA refers to Membership Inference Attack. To avoid
confusion in this work, we adopt M-Inverse for Model Inversion Attack. However, in
model inversion papers, MIA can also be used to denote model inversion attack.
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the objective of a model inversion attack is to design an algorithm
A that reconstructs as much private information as possible from the
original training data X . The algorithm A typically uses M outputs,
such as probabilities or embeddings, to achieve representative and
successful reconstructions. In an ideal scenario, a successful attack
would yield reconstructed data that closely resembles the training data
X , X̂ = A(M, K). Adversaries are assumed to know the domain of the
private data and can utilize public datasets from the same domain to
acquire auxiliary knowledge. Additional auxiliary knowledge depends on
the attack setting. In a white-box setting, adversaries have full access
to the target model’s architecture, parameters, and gradients, allowing
them to exploit internal details for data reconstruction. Meanwhile, in
a black-box setting, adversaries can only perform input-output queries,
observing model outputs without access to the model’s internals. A
label-only setting is a particular kind of black-box setting in which
confidence scores are not available and only the hard label is accessible.

M-Inverse has been studied across various domains, using unique
characteristics of each domain to infer private information about the
model’s training set. We introduce ’M-Inverse’ across three specific
domains: computer vision, natural language processing, and graph
learning. General frameworks for each are illustrated in Figure 3.6.
For each domain, we examine how M-Inverse leverages domain-specific
knowledge and attack techniques to compromise privacy.
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Figure 3.6: General framework of MIAs, with examples across three domains: (a)
computer vision, (b) natural language processing, and (c) graph learning.

M-Inverse in Computer Vision. The concept of M-Inverse was
first proposed by Fredrikson et al. (2014), where they applied M-Inverse
on linear regression models. Building on this foundation, Fredrikson et
al. (2015) applied M-Inverse to shallow networks by proposing a gradient
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descent algorithm that exploits the differentiability of these networks.
This traditional MIA aimed to reconstruct private data by optimizing
a loss function L to minimize the discrepancy between the target class
c and the target model’s prediction. Specifically, the objective is to find
an input x∗ that minimizes L(M, x̂, c), where M is the target model, and
x̂ is the synthetic image. However, this traditional MIA was restricted
to shallow networks and grayscale inputs.

To address these limitations above, Zhang et al. (2020b) introduced
generative M-Inverse, which leverages generative adversarial networks
(GANs) to learn prior image characteristics from a data distribution
P (Xprior). GAN consists of a generator G : Z → Xprior, mapping latent
codes z ∈ Z to synthetic data, and a discriminator D : X → R ∈ [0, 1],
which distinguishes between real samples x ∼ P (Xprior) and generated
samples G(z). The generator and discriminator competes with each
other in a max-min optimization game, where the generator G aims to
maximize the likelihood of the discriminator misclassifying G(z) as real,
while the discriminator minimizes its classification error. Under this
framework, the MIA objective reformulates the optimization to find a
latent code z∗ that minimizes L(M, G(z), c), ensuring that the generated
image G(z) resembles private images x ∈ Xtarget in the feature space.
This generative framework significantly enhances M-Inverse’ capabilities
to reconstruct representative samples on deep neural networks.

More recent works have advanced generative M-Inverse with state-
of-the-art techniques that improve attack performance. In the white-box
setting, Chen et al. (2021b) introduced an inversion-specific GAN that
incorporates soft labels produced by the target model, enabling recovery
of the target class distribution by optimizing the mean and deviation
of the latent space. Wang et al. (2021a) further advanced M-Inverse by
formulating a variational objective to balance diversity and accuracy.
Then, An et al. (2022) first introduced StyleGAN (Karras et al., 2019)
with distribution clipping to enhance inversion performance.

Generative M-Inverse have also benefited from advanced loss func-
tions as standard cross-entropy loss caused gradient vanishing problems.
To overcome this problem and boost MI performance, Struppek et al.
(2022) investigated M-Inverse in the high-resolution setting by leverag-
ing StyleGAN with Poincaré loss. Besides, they also introduced random
transformations and robust result selection, enhancing inversion robust-
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ness. Nguyen et al. (2023) revisited core objectives by introducing logit
maximization as a better loss function and mitigated model overfitting
through model augmentation. Building on this, Yuan et al. (2023b) used
a max-margin loss to optimize latent vectors, decoupling the search
space by training a conditional GAN (cGAN) with pseudo-labels gener-
ated from the target model. Most recently, Peng et al. (2024b) iteratively
fine-tuned the generator with pseudo-private data after each attack
round, effectively increasing the likelihood of sampling true private data
and further refining inversion performance.

In the black-box setting, Yang et al. (2019) trained an inversion
model using an auxiliary dataset derived from background knowledge
and a truncation-based approach. Then, Kahla et al. (2022) designed
a boundary repulsion algorithm that evaluates the target model’s pre-
dicted hard labels over a sphere to estimate the update direction. Later,
Han et al. (2023a) reframed the optimization process in the latent
space as a Markov Decision Process (MDP) and applied reinforcement
learning to solve it. Nguyen et al. (2024) advanced the label-only setting
by transferring decision knowledge from the target model to a surrogate
model, effectively transforming the label-only scenario into a white-box
one. Besides, they used a Target model-assisted ACGAN to further
enhance knowledge transfer between target and surrogate models.

M-Inverse in Natural Language Processing. In NLP, M-Inverse
is often treated as optimization problems. However, the discrete nature
of text makes traditional brute optimization computationally expensive
and time-consuming. To address this, Song and Raghunathan (2020)
introduced a continuous relaxation, which assigns continuous variables
to words and therefore enables gradient-based optimization. Targeting
embedding models, they learned a reverse network to map embeddings
back to word sets, supported by multi-label classification and multi-set-
prediction for evaluation and refinement.

Targeting text classification models, Parikh et al. (2022) focused on
recovering sensitive personal information, such as addresses or social se-
curity numbers and treated M-Inverse as a sentence completion problem.
They provided a sentence prefix and used discrete optimization on logits
for suffix tokens. Besides, Zhang et al. (2022d) leveraged a language
generation models like GPT-3 as an attack model. They optimized the
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hidden state of the attack model so that it generated text that matched
the distribution of the private dataset.

Generative approaches have advanced text inversion techniques. Li
et al. (2023a) introduced a word-by-word generation method, decoding
inputs using target text embeddings as initial token representations.
Besides, Morris et al. (2023) proposed Vec2Text, combining controlled
generation with iterative refinement to align hypothesis embeddings
with target embeddings. Extending this, Chen et al. (2024b) adapted
Vec2Text for multilingual scenarios.

M-Inverse in Graph Learning. Olatunji et al. (2023) introduced
graph reconstruction attacks by treating feature explanations as auxil-
iary knowledge. They proposed two approaches: an explanation-only
assault based on feature similarity and an explanation-augmentation at-
tack that takes node features into account. Zhou et al. (2023a) examined
how adjacency matrices can be recovered using GNN latent variables,
viewing graph reconstruction as a Markov chain approximation.

To address edge discreteness, Zhang et al. (2021f) developed a pro-
jected gradient module and a graph auto-encoder to leverage topology,
node attributes, and model parameters for edge inference. Shen et al.
(2022) proposed a model-agnostic graph recovery attack that only relies
on node embedding matrix without interacting with the node embed-
ding models. Chanpuriya et al. (2021) focused on learning a mapping
from embeddings back to graphs, further inferring private information
encoded in the embeddings. Then, Liu et al. (2023b) extended M-Inverse
to both homogeneous and heterogeneous graphs, adapting M-Inverse
on different graph types. Additionally, Zhang et al. (2022f) explored
embedding-based information leakage in graphs, offering theoretical
guarantees for M-Inverse to reveal sensitive graph details.

Further Discussion. (a) Cost of M-Inverse on Complex Models:
The increasing complexity of models make it challenging for current
M-Inverse to successfully invert large models such as transformer-based
language models with quite reasonable computational costs. Future
studies should focus on designing efficient and cost-effective attack
algorithms to reduce high computational costs. (b) Dependency on
Prior Knowledge: M-Inverse usually relies strongly on auxiliary data,
including leaked datasets or model architecture. Future research needs to
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reduce this dependence or develop effective methods that need less prior
knowledge. (c) Evaluation metrics and benchmarks: Current metrics
sometimes fail to capture the full performance of M-Inverse, particularly
in specialized domains such as computer vision. Meaningful comparisons
require uniform benchmarks and more varied and domain-relevant
measures, including semantic consistency or feature-level similarity.

3.4 Data Poisoning Attacks

With the remarkable advancements in deep learning across various do-
mains, its data-driven and data-hungry nature has heightened models’
vulnerability to data poisoning attacks. The fundamental concept of
data poisoning attacks is to inject “poisons” i.e., malicious data into the
training set, aiming to disrupt model training, degrade model perfor-
mance, or even implant backdoor within the model. With the growing
prevalence of transfer learning (Zhuang et al., 2020) and pretrained
models (Devlin et al., 2019), data poisoning attacks have acquired
the transferability across different models, which introduces hidden
threats and risks to models deployed in real-world scenarios. Addition-
ally, although federated learning (Kairouz et al., 2021) has strengthened
privacy protections, the lack of transparency in local client training
data has further exacerbated the risk of data poisoning attacks. As
deep learning models gain broader broader adoption across diverse
fields, including security-sensitive sectors like healthcare (Miotto et al.,
2018) and finance (Ozbayoglu et al., 2020), it is crucial to understand
the mechanisms and potential impacts of data poisoning attacks to
safeguard the trustworthiness and reliability of these models in practical
applications. In Figure 3.7, we present the illustration of data poisoning
attacks pipeline.

Problem Setup. The initial aim of data poisoning attacks is to
undermine the performance of a target model (Biggio et al., 2012). With
developments in modern deep learning, data poisoning attacks have
evolved to pursue more sophisticated goals, which aim at manipulating
specific target samples while minimizing the impact on other samples,
thereby making the attack less detectable (Saha et al., 2020). As a
data-centric attack, data poisoning requires that attackers access and
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Figure 3.7: Illustration of the pipeline for data poisoning attacks.

modify the training data. This access is relatively easy to obtain in
current deep learning landscape, as deep learning models often rely on
large volumes of data sourced from publicly available, unverified online
web resources (Nelson et al., 2008). Attackers can public malicious
data on these web platform, raising the risk that model developers
inadvertently include these poisoned data in their training sets. For
federated learning, attackers can poison updates by manipulating data
on local clients (Tolpegin et al., 2020). In this section, we categorized the
methodologies of data poisoning attacks into three types: data poisoning
with label modification, data poisoning with data modification, and
data poisoning with update modification. Each type corresponds to a
distinct attack scenario.

Data Poisoning with Label Modification. Label modification
is a type of commonly used data poisoning attack method, in which an
attacker manipulates the labels of certain data samples in the training
set. Since machine learning models primarily learn their pattern recog-
nition abilities from data-label pairs, label modification can mislead the
model into learning incorrect patterns or decision boundaries during
training process. In early work, Barreno et al. (2006) are the pioneers
to first explore the impact of data poisoning attacks on deceiving a
classification-based intrusion detection system. Subsequently, Biggio
et al. (2012) investigate the data poisoning attacks against support
vector machines (SVMs). With the advent of the deep learning era,
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models have become increasingly vulnerable to data poisoning attacks
with label modification. Due to the powerful memorization capabili-
ties of deep neural networks, models can memorize the all patterns
of training data including modified labels. For instance, Zhang et al.
(2021b) conduct extensive experiments to assess the susceptibility of
deep neural models to label-flipping attacks, demonstrating that these
neural models can overfit on training data and achieve zero training
error even when labels are entirely randomized, yet suffer from severely
degraded test performance. Considering that different data samples
contribute unequally to model learning, Biggio et al. (2011) aim to find
the most optimal samples for executing the attack. Similarly, Xiao et al.
(2012) seek to find a combination of label modification to maximize the
classification error. Zhao et al. (2017) propose an efficient label modifi-
cation method using an optimization approach to maximize the cosine
similarity between the learner’s and target model’s weight vectors.

Data Poisoning with Data Modification. In comparison to
the label space, the data space and distribution are significantly more
complex and challenging to estimate, thereby making data modification-
based poisoning attacks to be more subtle and harder to detect. In
general, there are two types of data modification poisoning methods,
i.e., optimization-based data modification and training-based data mod-
ification. Specifically, optimization-based methods focus on optimizing
a designated objective to generate data samples that maximize the
poisoning effect on the target model. For instance, some studies adopt
bilevel optimization on linear regression model (Jagielski et al., 2018)
and logistic regression model (Demontis et al., 2019) to generate poison-
ing attacks. Notably, Muñoz-González et al. (2017) employ deep neural
networks with gradient descent to optimize data samples for targeted
class attacks. Huang et al. (2020) leverage the meta-learning approaches
to approximate bilevel optimization to generate the poisoning sam-
ples. Generally, optimization-based methods provide precise control
over the generated poisoning attacks, but they are often inefficient and
constrained by the limitations of optimization algorithms.

In real-world scenarios, attackers may have no access to the target
model, making direct attacks challenging. Training-based data modifica-
tion introduce an auxiliary model that simulates the behavior of target
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model to help indirectly generate poisoning samples. For example, Zhu
et al. (2019) train a substitute model that approximates the victim
model and optimize poison images to form a polytope that encloses the
target image within the feature space. This strategy causes the target
model to misclassify the target image as the same class as the poison
images when it overfits to the poisoned data, achieving high transfer-
ability in the attack without requiring access to the victim model. Li
et al. (2021b) introduce hidden backdoor attacks that bypass human
inspection using homograph replacements and model-generated fluent
sentences as subtle triggers for natural language models. Additionally,
generative models such as auto-encoders (Kingma, 2013) and gener-
ative adversarial networks (GANs) (Goodfellow et al., 2014), play a
significant role in data poisoning attacks by leveraging their generative
abilities to create poisoning samples. For instance, Yang et al. (2017)
construct a GAN structure in which an autoencoder acts as the gen-
erator to produce poisoning samples, while the target model serves as
the discriminator to refine them, thereby accelerating the process of
generating efficient poisoning attacks. Compared to optimization-based
methods, training-based approaches offer greater adaptability and are
better suited for scenarios lacking direct access to the target model.
However, ensuring the quality and stealth of poisoning data remains a
challenge.

Data Poisoning with Update Modification. Although the
distributed client-server architecture in federated learning effectively
enhances data privacy, it also opens the door to potential data poisoning
attacks. Attackers can manipulate compromised clients that train local
models on malicious data and send poisoned gradient updates to the
server. For instance, Tolpegin et al. (2020) demonstrate that even a
small proportion of malicious participation using label flipping can
substantially reduce the classification performance of the global model.
Cao et al. (2019a) investigate the effect of the number of attackers and
poisoned training samples on attack success rates through distributed
label-flipping attacks. Zhang et al. (2020a) introduce PoisonGAN, a
GAN-based model that crafts the poisoned samples without requiring
direct access to the participants’ training data. In general, there are
several core challenges associated with performing poisoning attacks in
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federated learning systems, including the limitation of influence and the
necessity to maintain stealth. The aggregation of updates from numerous
benign participants dilutes the influence of any single malicious client,
which may reduce the attack’s effectiveness and make it challenging
for the attacker to achieve their intended objectives. In particular, Xue
et al. (2021b) define a notation called FedInfluence, to quantify the
influence of individual clients on federated learning model parameters.
When attackers control multiple malicious clients, this scenario is known
as sybil attacks (Singh et al., 2006), which amplifies collective influence
on the global model.

Generally, the more clients an attacker controls, the higher the suc-
cess rate of the attack. However, there is a trade-off relationship between
influence and stealth: more clients increases influence of updates on the
global model but also raises the risk of detection. Therefore, it is crucial
to balance both the efficiency and stealth of the attack. For instance,
Baruch et al. (2019) introduce a concept of perturbation range within
which attackers can modify parameters without being detected. Xie
et al. (2019) propose distributed backdoor attacks, where a global trigger
pattern is broken down into distinct local patterns and embedded into
the training datasets of multiple adversarial clients. This strategy en-
hances the stealth of the attack, as the malicious clients resemble benign
ones, making detection more difficult. In summary, data poisoning with
update modification highlights the inherent vulnerabilities in federated
learning, where attackers can exploit the distributed architecture to
compromise the global model.

Further Discussion. As data poisoning attacks continue to grow
in sophistication and prevalence, it is paramount to develop effective
defense mechanisms that can detect and mitigate poisoning attacks
without compromising model performance for enhancing the robustness
and reliability of deep learning models. Existing countermeasures are
largely attack-specific and lack generalization to real-world scenarios
with diverse attack methods (Liu et al., 2018). How to design adaptive,
scalable, and generalizable defenses that can effectively counter a wide
range of poisoning strategies remains an open question. Additionally, in
current era of large foundation models, research on poisoning attacks
and defenses is still in its early stages (Yao et al., 2024b). Understanding
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the intricate attack mechanisms and developing comprehensive defense
strategies are critical areas for future work.

3.5 Machine Unlearning

Machine unlearning is an emerging research problem that enable ma-
chine learning models to forget specific data points or knowledge while
retaining overall performance. This is especially crucial in situations
when data privacy and security are critical, such as when sensitive
information is no longer required or must be deleted in order to comply
with regulations such as GDPR (Shaik et al., 2023) (e.g., the “the right
for forgetting”). Since the traditional machine learning models require
a post-hoc adjustment regarding the issues with data governance and
ethical AI practices, machine unlearning is getting increasing atten-
tion and assigned important significance for ensuring trustworthiness.
Researchers seek to develop efficient algorithms capable of erasing in-
formation from models in an effective and secure manner, guaranteeing
the unlearn efficacy while maintaining model integrity. In Figure 3.8,
we present the illustration of machine unlearning and two examples.

Unlearning Generated Content of Large Language Model

Unlearning Training data of Discriminative Models

Original 
Model

Retrained
Model

Remove Data Unlearned 
Model

Unlearning

Approximating

Training Data
Identification

Q: What is the 
XXX’s ID?

Q: What is the XXX’s ID?
A: XXX’s ID is 123456789

Q: What is the XXX’s ID?
A: XXX’s ID is 123456789

Q: What is the XXX’s ID?
A: I’m sorry that I can not tell 

you someone’s ID which is 
sensitive information.

Figure 3.8: Illustration of machine unlearning and two examples regarding unlearn-
ing training data in discriminative model or generated content of large language
model.

Problem Setup. Given a pre-trained machine learning model,
machine unlearning aims to eliminate the influence of training data,
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as if the model has never used them during training. Let X ⊂ Rd

denote the input space of data and the original training dataset D =
{(xi, yi)}N

i=1 consists of two subsets in machine unlearning, e.g., the
forgetting dataset Df and the retaining dataset Dr = D\Df. Building
upon the model fθ∗ with the loss function ℓ, the general target of this
research problem is to find an unlearned model θ∗

un, which approximates
the behaviors of the model θr that retrained on Dr from scratch, referring
to the exact unlearning. To measure the approximate performance,
we can use R(θ∗

un, θr, Df, Dr) to indicate a general risk measure for
model behaviors (Golatkar et al., 2020), which can be instantiated
by comprehensive evaluation metrics regarding its specific application
scenarios or original tasks (Jia et al., 2023; Fan et al., 2024). In general,
we hope to unlearn the specific knowledge of the pre-trained model but
avoid destructive effects on model performance of the retaining part.

The research focusing on machine unlearning can be generally cat-
egorized into two aspects. The first is unlearning the training data in
discriminative models, which targets the protection of data privacy and
gives users the right to forget. The second is unlearning the knowl-
edge learned by generative models like the large language models for
forgetting generated content.

Unlearning Training data of Discriminative Models. The
conventional machine unlearning exploration mainly focuses on dis-
crimination models (Golatkar et al., 2020; Thudi et al., 2022b; Thudi
et al., 2022a; Fan et al., 2024; Chen et al., 2023b; Gandikota et al.,
2023; Zhang et al., 2023a), especially for classification tasks. Given
the request for training data withdrawal, researchers have developed a
series of methods towards approximating the retrained model, which
is training excluding the forgetting data. The methodologies can be
generally divided into three categories to achieve the unlearning target.
The first is the finetuning-based approach (Warnecke et al., 2023), which
utilizes the catastrophic forgetting to unlearn the forgetting data via
tuning on only the retaining data. The second is adopting the gradient
ascent (Thudi et al., 2022a) to conduct active forgetting, which maxi-
mizes the loss of forgetting data to reserve the learning process. It can
be also achieved by assigning random labels (Jia et al., 2023) or adver-
sarial perturbation (Chen et al., 2023b) to disrupt the learned decision
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boundary. Considering the parameter-based similarity definition from
a theoretical perspective, there is a third category of the method that
achieves effective unlearning by scrubbing the data points using the
influence function (Golatkar et al., 2020; Xu et al., 2023).

Unlearning Generated Content of LLMs. Research on un-
learning in large language models (LLMs) is still in its nascent stages
but has already attracted significant attention, primarily because of its
importance in ensuring that public LLMs avoid privacy and copyright
issues. Currently, the literature identifies three main directions: gradient
ascent (GA), in-context unlearning (ICUL), and task vector (TV).

GA implements unlearning by reversing the model learning process
via using gradient ascent (instead of gradient descent) for model up-
dating. Given a set of data Du = {s1, . . . , sn} targeted to be unlearned,
the corresponding unlearning objective can be written as

arg min
θ

1
n

∑
s∈Du

log pθ(s), (3.6)

where pθ(s) denotes the probability of generating s for the current model
parameterized by θ. It directly reduces the probabilities of generating
contents resembling Du to approach zero. However, it is worth noting
that gradient ascent (GA) carries a remarkable risk of excessive unlearn-
ing, where its effectiveness in removing specific information comes at the
cost of impairing the general utility, potentially rendering the unlearned
models useless. This issue has motivated a series of subsequent studies
aimed at refining GA. For instance, Gradient Difference (GD) seeks to
regulate the unlearning process used in GA by incorporating a set of
retained data, denoted as Dr and typically sampled from the original
training corpus, with a size of m. This method helps balance unlearn-
ing with the preservation of overall model performance, following the
unlearning objective of

1
n

∑
s∈Du

log pθ(s) − 1
m

∑
s∈Dr

log pθ(s). (3.7)

Also, negative preference optimization (NPO) directly modifies the
unlearning objective following
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2
βn

∑
s∈Du

log
[
1 + ( pθ(s)

pθref(s))β

]
, (3.8)

where β is a hyper-parameter and θref denotes model parameters before
unlearning. It is provable that it is equivalent to GA with instance-wise
weighting, following

1
n

∑
s∈Du

ws log pθ(s) with ws = 2pθ(s)β

pθ(s)β + pθref(s)β
, (3.9)

where ws makes NPO converge faster than GA and thereby mitigating
excessive unlearning.

Unlike methods based on GA, In-Context Unlearning (ICUL)
achieves the removal of specific training data of our interest by manipu-
lating the input context at inference time, without the need for adapting
model parameters. In general, it incorporates a series of wrongly labeled
corpora into the original input context, along with correctly labeled
ones sampled from the training distribution. Since model parameters
are intact, ICUL faces less risk of excessive unlearning over GA.

Moreover, task vector (TV) involves further fine-tuning the model on
Du. Therein, we discern between the pre-trained model with parameters
θo and that after fine-tuning, namely θf . The task vector, defined
as θf − θo, represents the incremental parameter changes required to
strengthen the knowledge related to Du. Then, we can unlearn Du
by subtracting the task vector from the original model, resulting in
θo − (θf − θo) as the resulting unlearned model. TV can also mitigate
the risk of excessive unlearning meanwhile can be well adapted to the
setup of continous unlearning.

Further Discussion. Although the progress of research in machine
unlearning has achieved promising results, further development is still
needed toward effective unlearning in practical scenarios and reliable
evaluations. From the setting perspective, previous conventional scenar-
ios mainly focus on the all matched scenario in which the forgetting
data and the target are matched and all the retaining data is accessible,
while sometimes it may not hold since the unlearning target can be
different concept from the identified forgetting example (Zhu et al.,
2024a; Gandikota et al., 2023); From the methodology perspective, the
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intrinsic trade-off between the forgetting and retaining target is still the
critical question in conducting complex unlearning on the pre-trained
model (Xu et al., 2023; Shaik et al., 2023); From the evaluation per-
spective, since unlearning has been assigned a more general significance
on posthoc adjustment for trustworthiness requirement, the measure-
ment for forgetting or erasing knowledge is differently challenging for
different applications or scenarios. As for the foundation models, how to
evaluate the knowledge removal for the internal representation remains
underexplored in the literature (Wang et al., 2024a).

3.6 Non-transfer Learning

Well-trained deep learning models are the core of Machine-Learning-
as-a-Service (MLaaS), which are being provided in a wide range of
applications of our daily lives (Oliynyk et al., 2023; Xue et al., 2021a).
The training process of deep learning models is always highly cost,
requiring massive high-quality annotated data, expensive computation
resources, and often takes a long time (e.g., weeks or months). All these
lead to the high business value of well-trained deep learning models (Xue
et al., 2021a). Thus, how can the model owners properly protect the
intellectual property (IP) (Xue et al., 2021a; Zhang et al., 2021c; Guo
et al., 2024; Wang et al., 2022c; Wang et al., 2024d) of their models is
waiting to be solved.

Recently, non-transfer learning (NTL) (Wang et al., 2022c) was
proposed as a novel technology in model IP protection. The IP risks
of models trained in the supervised learning (SL) paradigm are mostly
owing to its strong generalization ability from the authorized data to
any unauthorized data, as shown in Figure 3.9. Such uncontrollable
generalization ability can be leveraged by the malicious adverses in
an unwanted way (e.g., use the model on unauthorized data or even
harmful data), thus leading to IP leakage. Therefore, NTL starts the
model IP protection from the perspective of reshaping the generalization
abilities of deep learning models.

Problem Setup. According to whether the target domain is known
in the training stage, NTL could be subdivided into target-specified
NTL (restricting the model generalization toward a specific unauthorized
domain) and source-only NTL (i.e., restricting the generalization toward
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Figure 3.9: Illustration of the objectives of supervised learning (left), target-specified
non-transfer learning (middle), and source-only non-transfer learning (right).

all other domains except the authorized domain), as shown in Figure 3.9.
We use an image classification task for illustration, as most existing
NTL methods aim at classification tasks. Let X denote the input space
and Y denote the label space. We use Da = {(xi, yi)}Na

i=1 and Du =
{(xi, yi)}Nu

i=1 represent the authorized domain and the unauthorized
domain, respectively. Note that we mainly consider the NTL problem
where the Da and Du share the same label space. Considering a neural
network fθ : X → Y with parameters θ, target-specified NTL aims
to train the fθ to maximize the risk on the unauthorized domain Du

and simultaneously minimize the risk on the authorized domain Da. In
addition, for source-only NTL, the aim is to train the fθ to maximize
the risk on any possible unauthorized domain Du (unknown during the
training stage) and minimize the risk on the authorized domain Da at
the same time.

Target-specified NTL and source-only NTL serve as promising so-
lutions for two types of IP protection techniques: ownership verifica-
tion (Lederer et al., 2023) and applicability authorization (Wang et al.,
2022c), respectively. After training, an NTL model usually be evaluated
by two metrics, including (i) performance degradation on unauthorized
domain: to which extent the NTL model can degrade the performance
on the unauthorized domain; and (ii) performance maintenance on
authorized domain: whether the NTL model be able to achieve normal
performance (i.e., the same level as the SL model) on the authorized
domain.
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Target-specified NTL and Ownership Verification. To reach
the goal of target-specified NTL, a basic framework is to impose a
regularization term on the supervised learning (SL) to maximize the
unauthorized domain error:

min
θ

{
Lntl :=E(x,y)∼Da

[La(fθ(x), y)]︸ ︷︷ ︸
Tauth

−λ E(x,y)∼Du
[Lu(fθ(x), y)]︸ ︷︷ ︸

Tunauth

}
,

(3.10)

where λ is a weight, La and Lu represent the loss function (e.g., Kullback-
Leible divergence) for the authorized and the unauthorized domain,
respectively. Intuitively, the general NTL framework can be split into
two tasks: (i) an authorized domain learning task Tauth to maintain
the authorized domain performance, and (ii) a non-transferable task
Tunauth to degrade the unauthorized domain performance, which acts
as the regularization term.

Existing methods perform the non-transferable regularization Tunauth
either on the feature space or the output space. Wang et al. (2022c)
maximize both the Kullback-Leibler (KL) divergence between the pre-
dictions of unauthorized data and its correct labels, and the Maximum
Mean Discrepancy (MMD) between the features from different domains.
UNTL (Zeng and Lu, 2022) focuses on the setting of unsupervised
unauthorized domain in the text classification task. They train an
additional domain classifier to separate features from authorized and
unauthorized domains. CUTI-domain (Wang et al., 2023d) combines the
image content from the unauthorized domain and the image style from
the authorized domain, thus obtaining a middle domain. Then, they
maximize the KL divergence between the model predictions on both the
middle and unauthorized domains with their labels. H-NTL (Hong et al.,
2024d) identifies the problem of fitting spurious-correlation (Zhang et al.,
2022e; Lv et al., 2022) in existing NTL methods. They address it by
proposing a variational inference framework to disentangle the content
and style factors from the authorized and unauthorized data. Then,
they let the model features fit content (style) factors with authorized
(unauthorized) data as input, thus implementing non-transfer learning.
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Target-specified NTL serves as a promising solution of ownership
verification which is a passive model IP protection strategy for verifying
the ownership of a deep learning model (Lederer et al., 2023). Specifically,
target-specified NTL implements ownership verification by triggering
misclassification on the unauthorized domain (Wang et al., 2022c; Wang
et al., 2023d; Hong et al., 2024d; Peng et al., 2024a). Existing methods
add some pre-defined shallow triggers (only known by the model owner)
on each authorized data and see them as the unauthorized domain. Then,
they train the NTL model on these two domains. After training, the
NTL model will have a good performance on the authorized domain, but
its performance on the unauthorized domain will be poor. In contrast,
due to the unconstraint generalization ability, a SL model trained on
the authorized domain could have a similar performance on both the
authorized data and the unauthorized data with pre-defined triggers.
Therefore, by observing the performance difference of a trained model
on the data with and without the pre-defined trigger patch, we can
verify whether a deep learning model belongs to the model owner, i.e.,
verification of the ownership.

Source-only NTL and Applicability Authorization. In the
source-only NTL setting, the model owners only know the authorized
domain, and the purpose is to degrade the model performance on any
possible unauthorized domain, i.e., restricting the model generalization
abilities inside to the authorized domain. Due to the assumption that
only the authorized domain is available during the training stage, exist-
ing methods (Wang et al., 2022c; Wang et al., 2023d; Wang et al., 2023a;
Hong et al., 2024d; Peng et al., 2024a) take various data augmentation
methods on the authorized domain to obtain augmented domains. Then,
these augmented domains are seen as the unauthorized domain in (3.10),
and thus, existing target-specified NTL methods can be used to solve the
source-only NTL problem. Wang et al. (2022c) and Wang et al. (2023d)
leverage generative adversarial network (GAN) (Mirza and Osindero,
2014; Chen et al., 2016) to synthesize fake images following different
distribution shifts (distance and directions) from the authorized domain.
Hong et al. (2024d) use strong image augmentation strategies (Sohn
et al., 2020; Cubuk et al., 2020) to obtain the fake unauthorized do-
main from the authorized domain. DSO (Wang et al., 2023a) performs
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a perturbation-based strategy to generate the unauthorized domain
distributed in the surroundings of the authorized domain.

Source-only NTL drives the active IP protection strategy: applicabil-
ity authorization. More specifically, applicability authorization intends
to lock the model’s utility to authorized data, thus preventing their
usage on unauthorized data (Wang et al., 2022c). Compared to owner-
ship verification, which can only track the ownership of the model after
leaked, applicability authorization can provide active IP protection by
totally putting an end to the model utility on unauthorized data.

Further Discussion. Enhancing the robustness of NTL and extend-
ing NTL to larger models are two future directions with potential values.
NTL Robustness: NTL provides promising solutions in the field of model
IP protections. However, recent research has identified its vulnerability
against well-designed fine-tuning attacks. By using either small parts
of authorized data (Hong et al., 2024c) or unauthorized data (Deng
et al., 2024), these attacks can re-activate the generalization ability of
NTL models to the unauthorized domain. Such findings uncover the
risks of NTL-based IP protections in white-box scenarios. Thus, it is
significant for future works to advance the robustness of NTL methods
against various malicious attacks. NTL of Large Models: Existing NTL
methods only focus on small-scale models and the applications of IP
protection. Compared to small-scale models, the strong abilities of large
models (e.g., large language models, LLMs) make it more important to
consider their controllable generalization ability (e.g., mitigating LLMs
to generate harmful or illegal content). The technology of NTL can be
extended to these large models in the future.

3.7 Federated Learning

Federated Learning (FL) is a distributed machine learning paradigm
that allows multiple clients (e.g., mobile devices, organizations) to
collaboratively train a model without sharing their local data. Rather
than centralizing data on a single server, FL leverages the computational
power of edge devices, such as smartphones, tablets, and IoT devices,
to perform local computations and only share model updates. These
updates are aggregated by a central server to improve the global model.
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This paradigm enhances data privacy and security since raw data never
leaves the local devices, reducing the risk of data breaches and ensuring
compliance with data protection regulations. Federated Learning is
particularly beneficial in scenarios where data is sensitive, such as
healthcare or finance, or when data is distributed across a large number
of devices, making traditional centralized training infeasible. By enabling
collaborative learning without compromising user privacy, FL opens
new avenues for building intelligent systems that respect data ownership
and privacy.

Direction 1: Data Heterogeneity. One of the key challenges
in Federated Learning is data heterogeneity, which refers to the non-
identical and independent distribution (non-IID) of data across different
clients. This heterogeneity arises because each client collects data in
unique contexts and environments, leading to significant variations in
data characteristics such as feature distributions, label distributions, and
data quality. This data heterogeneity poses challenges for model training,
as traditional machine learning algorithms often assume data to be IID.
In Figure 3.10, we present the illustration of the data heterogeneity
issue in federated learning.

Server

Client 0 Client 1 Client 𝑛 − 1 Client 𝑛

…

data from Client 0 data from Client 1

data from Client 0 data from Client 0

Figure 3.10: Illustration of the data heterogeneity issue in federated learning.
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Problem Setup. The Non-IID data problems are in reality. To
simulate the data heterogeneity problem, most previous researches adopt
two kinds of distribution shifts: Pathological distribution and Dirichlet
distribution. For Pathological distribution, most clients will only be
assigned with data from a certain number of classes by first sorting
the data by its label, then dividing it into shards of same size. As
for Dirichlet distribution, it is a probability distribution defined with
parameter α, its probability density function (PDF) is given by the
following formula:

f (x1, . . . , xK ; α1, . . . , αK) = 1
B(α)

K∏
i=1

xαi−1
i ,

where B(·) is the multivariate beta distribution, {xk}k=K
k=1 is the label

indexes. With those two types of distributions to simulate the data
heterogeneity in real world, the goal of FL methods are to achieve better
performance with minimal communication and computation costs.

To tackle the problem of data heterogeneity, several different kinds
of methods have been proposed in previous studies. Utilizing pubilc
datasets. Creating a small data set that can be shared globally can help
mitigate the effect of non-IID by knowledge distillation (Cho et al.,
2022) to transfer public data knowledge or correction toward the local
model to become less heterogeneous. This data set can originate from
a publicly available proxy data source, a separate data set from client
data that is not sensitive to privacy, or perhaps a distillation of the raw
data following (Wang et al., 2020a).

Regularization on local update. In order to mitigate the bad
effect caused by client shift, Li et al. (2020d) proposed to add a proximal
term in each local objective function so as to make the algorithm be
more robust to the heterogeneity across local objectives. The proposed
FedProx algorithm empirically improves the performance of federated
averaging. Similarly, Li et al. (2021a) utilize the similarity between
model representations to correct the local training of individual parties
by conducting contrastive learning in model-level.

Crafting the objective function. The heterogeneity of client
objective functions gives additional importance to the question of how
to craft the objective function — it is no-longer clear that treating
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all examples equally makes sense. Alternatives include limiting the
contributions of the data from any one user.

Personalized FL. If local training is possible, it becomes feasible for
each client to have a customized model. This approach can turn the non-
IID problem from a bug to a feature, almost literally — since each client
has its own model, the client’s identity effectively parameterizes the
model, rendering some pathological but degenerate non-IID distributions
trivial. Smith et al. (2018) introduced the MOCHA algorithm for multi-
task federated learning allowing every client owns a customized model.
In multi-task learning, the result of the training process is one model
per task. This directly tackled challenges of communication efficiency,
stragglers, and fault tolerance.

Future Discussion. The future of federated learning in the context
of data heterogeneity involves several promising directions: Test-time
adaptation FL: Developing algorithms that dynamically adjust to the
heterogeneity of clients at inference time accoring to the test data. For
example, FedTHE (Jiang and Lin, 2023) ensemble global model and
local model by weighted average, and the adaptive weight is optimized
on test data in a unsupervised-style way. Model Agnostic Techniques:
Techniques such as Model-Agnostic Meta-Learning (MAML) can be
used to train models that are agnostic to the specifics of any partic-
ular client’s data (Park et al., 2021), allowing for quick adaptation
and improved performance on heterogeneous data. Federated Averaging
Variants: Exploring and developing variants of the Federated Averag-
ing (FedAvg) algorithm that are more resilient to data heterogeneity.
For example, algorithms that incorporate gradient clipping, adaptive
learning rates, or alternative update rules like Sharpness Aware Min-
imization (SAM) (Qu et al., 2022) can be considered. Cluster-Based
Personalization: Clients with similar data distributions can be clustered
together (Ghosh et al., 2020), and specialized models can be trained for
each cluster. This reduces the impact of heterogeneity by focusing on
more homogeneous subsets of data.

Direction 2: System Heterogeneity. In the context of federated
learning, system heterogeneity refers to the differences in computational
resources, communication capabilities, and data distributions across
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Figure 3.11: Illustration of the system heterogeneity issue in federated learning.

various clients participating in the training process. These differences
can significantly impact the efficiency and effectiveness of training a
global model. In Figure 3.11, we present the illustration of the system
heterogeneity issue in federated learning. Here’s a breakdown of how
each aspect of system heterogeneity influences training:

Problem Setup. In federated learning, the goal is to train a
global model θ by aggregating local models θi from {1, ..., K}. Following
attributes are main factors that introduce the system heterogeneity.

• Computational Heterogeneity: Clients have varying computa-
tional capabilities, which means they differ in processing power,
memory, and other hardware resources.

• Communication Heterogeneity: Clients experience varying
network conditions, resulting in different communication delays.

• Data Heterogeneity: Clients possess different data amounts,
which leads to variations completion time of local training.

Let T comp
i be the time taken by client i to perform local computations.

This time depends on the computational capability of the client. Let
T comm

i be the time taken by client i to communicate its local model
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updates to the server. This time depends on the network conditions.
The total time Ti for client i to complete an iteration is given by:

Ti = T comp
i + T comm

i . (3.11)

Straggler Effect. The straggler problem arises when there is a
significant variation in Ti across clients, i.e., max(T1, T2, . . . , TK) −
min(T1, T2, . . . , TK) is large. This leads to delays in aggregating the
global model θ (Kairouz et al., 2021; Yang et al., 2022a; Wang and Ji,
2022; Yoon et al., 2021a; Criado et al., 2022).

Asynchronous Federated Learning. To mitigate the straggler
effect, asynchronous methods (Wang et al., 2024c; Xu et al., 2021a; Hu
et al., 2022a) allow clients to send updates at different times, which the
server can incorporate without waiting for all clients. This approach
reduces the idle time for faster clients and allows the server to continu-
ously update the global model with the most recent information, thus
maintaining momentum in the training process and preventing delays
caused by slower clients (Yang et al., 2022a; Wang and Ji, 2022; Tang
et al., 2020b; Gao et al., 2022a; Shen et al., 2024).

Client Selection. Selecting a subset of clients based on their
availability and resource capabilities can improve efficiency and reduce
the impact of heterogeneity (Hu et al., 2022a; Sun et al., 2020). By
choosing clients that are more likely to complete their tasks quickly,
the server can ensure that updates are received in a timely manner,
minimizing the waiting time for stragglers and maintaining a steady
flow of information for model updates (Sprague et al., 2019; Lim et al.,
2020; Tang et al., 2020b; Gao et al., 2022a; Shen et al., 2024; Nishio
and Yonetani, 2019).

Partial Participation. Instead of waiting for all clients to complete
their local updates, the server can proceed with aggregating updates
from a subset of clients that have completed their tasks, thus reducing
waiting time (Anh et al., 2019; Tang et al., 2020b; Hu et al., 2022a; Sun
et al., 2020). This approach allows the server to make progress even
when some clients are delayed, ensuring that the global model is updated
regularly and reducing the impact of any single straggler (Nishio and
Yonetani, 2019; Tang et al., 2020b; Gao et al., 2022a; Shen et al., 2024;
Li et al., 2020e).
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Adaptive Aggregation. Implementing adaptive aggregation tech-
niques that weigh client updates based on their timeliness and reliability
can help in reducing the impact of stragglers (Reddi et al., 2020; Tang
et al., 2020a). By prioritizing updates from clients that are more consis-
tent and timely, the server can maintain a more accurate and up-to-date
global model, while still incorporating valuable information from slower
clients when available (Khodak et al., 2019; Gao et al., 2022a; Shen
et al., 2024; Sprague et al., 2019; Lim et al., 2020).

Model Compression. Using model compression techniques to
reduce the size of updates can decrease communication time, thus
helping slower clients to catch up (Frankle and Carbin, 2018; Li et al.,
2020a; Khodak et al., 2019; Yu et al., 2020). By minimizing the data
that needs to be transmitted, clients with limited bandwidth or slower
connections can send their updates more quickly, reducing the overall
delay in the training process and mitigating the straggler effect (Amiri
et al., 2020; ElKordy and Avestimehr, 2020; Tang et al., 2020b; Tao and
Li, 2018; Tang et al., 2024c).

Hierarchical Federated Learning. Organizing clients into a hier-
archy where local aggregations are performed before sending updates
to the central server can reduce the communication burden and mit-
igate straggler effects (Kairouz et al., 2021; Tang et al., 2024c). By
aggregating updates at intermediate nodes, the amount of data that
needs to be sent to the central server is reduced, allowing for faster
communication and lessening the impact of slower clients on the overall
training process (Liang et al., 2020; Tang et al., 2024a; Tang et al., 2023;
Liu et al., 2020b).

Peer-to-Peer Federated Learning. In this kind of approach,
clients communicate directly with some clients to share model up-
dates (Tang et al., 2022), rather than relying solely on a central server.
This decentralized communication model can enhance the robustness
and scalability of federated learning by reducing the server’s communi-
cation bottleneck and allowing clients to collaboratively improve their
models. This method is particularly beneficial in environments where
a central server is not feasible or where network connectivity is lim-
ited (Tang et al., 2020b; Tang et al., 2024a; Tang et al., 2022; Tang
et al., 2020a).
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Resource-Aware Scheduling. Implementing scheduling policies
that consider the resource constraints of clients to optimize participation
and reduce latency. By taking into account the computational and
communication capabilities of (Amiri and Gündüz, 2020; Xu et al.,
2021b) each client, the server can schedule tasks in a way that maximizes
efficiency and minimizes the waiting time for updates, thus reducing
the impact of stragglers and ensuring a more balanced and effective
training process (Amiri and Gündüz, 2020; Tang et al., 2020b; Tang
et al., 2024a; Tang et al., 2022; Ren et al., 2021; Xu et al., 2021b).

Extremely Low Communication Rounds. The one-shot FL
(OFL) focuses on minimizing the number of these communication rounds
required to achieve a satisfactory model performance (Zhang et al.,
2022b; Guha et al., 2019; Li et al., 2020c; Zhou et al., 2020; Dennis
et al., 2021). This is crucial because communication can be a significant
bottleneck in FL, especially when dealing with a large number of clients
or when clients have limited bandwidth (Dai et al., 2024b; Tang et al.,
2024b). Some exiting methods propose to use data and ensemble co-
boosting to further improve the performance of OFL (Dai et al., 2024b).
And recent advanced works improve the OFL performance from the
perspective of causal inference (Tang et al., 2024b).

Future Discussion. The future of federated learning in the context
of system heterogeneity involves several promising directions: Adap-
tive Algorithms: Developing algorithms that dynamically adjust to the
heterogeneity of clients. For example, clients with different computa-
tional capabilities and communication delays can have different selection
frequency and different local update frequency. Robust Aggregation: De-
signing aggregation methods that are robust to outliers and biased
updates due to non-IID data. Resource-Aware Scheduling: Implement-
ing scheduling policies that consider the resource constraints of clients to
optimize participation and reduce latency. Modular Design: Designing
FL systems with modular components that can be easily adapted to
different scenarios and heterogeneous environments.

In conclusion, addressing system heterogeneity in federated learning
is crucial for its scalability and effectiveness. By understanding and
tackling the challenges posed by diverse client environments, federated
learning can be more widely adopted across various applications.



4
Trustworthy Foundation Models

The creation of foundation models (FM) has ushered in amazing break-
throughs across a variety of fields, which have occurred within the
context of the fast-developing landscape of artificial intelligence. On
the other hand, in tandem with these accomplishments, considerable
questions over the dependability and safety of these models have sur-
faced. The issues that are presented by jailbreak prompts, watermarking
approaches, hallucinations, and causal learning and reasoning are the
primary topics that are discussed in this section. This section digs into
essential features that support the trustworthiness of foundation models.
Each of the sections will investigate the ramifications of these problems,
bringing attention to the need to develop solid solutions in order to
guarantee that FMs may be implemented into real-world applications
in a secure and efficient manner.

The overall framework of this section is illustrated in Figure 4.1,
which discusses issues in building the trustworthy foundation models.
Section 4.1 ignites the discourse by exposing FMs’ susceptibility to
jailbreak attacks—malicious prompts that weaponize model flexibility,
exploiting semantic ambiguities to bypass ethical safeguards. These
attacks reveal a fundamental tension: the very adaptability that empow-
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Figure 4.1: The overall framework of trustworthy foundation models.

ers FMs also renders them vulnerable, triggering an urgent quest for
defensive countermeasures. Section 4.2 investigate watermarking as a
potentially useful method for preventing the harmful use of foundation
models, especially with regard to the identification of material created by
FMs and the safeguarding of intellectual property. Section 4.3 presents
hallucination which exposes a critical gap: safeguarding against external
attacks proves insufficient without addressing intrinsic model flaws. The
particularly catastrophic in high-stakes domains like healthcare, neces-
sitate a paradigm shift from reactive defenses to architectural redesign.
Section 4.4 delivers this evolution through causal learning, reframing
reliability as a reasoning challenge. By encoding causal graphs and
counterfactual logic into FM architectures, researchers rewire models
to mimic human-like deduction, grounding outputs in verifiable causal
chains rather than statistical correlations. This transforms FMs from
stochastic parrots into accountable reasoners, showing potentials on
simultaneously mitigating other unreliable issues. Finally, Section 4.5
discusses the different trustworthy concerns in open and proprietary
foundation models regarding their distinct properties.
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4.1 Jailbreak Prompts

Notwithstanding the notable accomplishments of Large Language Mod-
els (LLMs) in diverse fields, substantial apprehensions persist about
their possible misuse despite the introduction of many safety measures.
Recent studies (Deng et al., 2023; Zou et al., 2023; Chao et al., 2023;
Qi et al., 2023) have demonstrated that LLMs are vulnerable to jail-
break attacks, which can bypass the safety guardrails and trigger the
generation of harmful contents, e.g., detailed steps on bomb-making or
objectionable information about the minority (Christiano et al., 2017).
Jailbreak prompts might cause LLMs to generate improper material,
presenting safety issues while using LLMs (Das et al., 2024; Chowdhury
et al., 2024; Verma et al., 2024; Cai et al., 2024).

Problem Setting. Shown in Figure 4.2, the primary aim of jail-
break (Deng et al., 2023; Zou et al., 2023; Chao et al., 2023; Feffer
et al., 2024) is to develop a prompt that elicits the LLM’s production of
inappropriate content. In contrast to adversarial jailbreaks necessitating
white-box optimization with LLMs for generation (Liu et al., 2024g;
Zou et al., 2023), we mainly consider the training-free and black-box
jailbreak, which is more practical. Given a specific prompt P , we expect
to induce the response Rθ(O) from distribution pθ(·|P ) parameters by
LLM θ for objectionable target O in (4.1).

Induce Rθ(O) contains objectionable target O,

where Rθ(O) ∼ pθ(·|P ).
(4.1)

adversarial
prompts

a malicious user a “jailbroken” FM

Jailbreaking FM via Adversarial Prompts

Figure 4.2: A demonstration of jailbreaking an LLM.

Training-based Jailbreak. The pioneering work (Deng et al., 2023)
introduces Jailbreaker, an automatic framework designed to explore the
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generalization of jailbreaks. This architecture, with a finetuned LLM,
illustrates the capability of automatic jailbreak generation for many
commercial LLM chatbots. Furthermore, Zou et al. (2023) introduce
an automated jailbreak technique in a white-box setting explicitly.
The follow-up work AutoDAN by Liu et al. (2024g) employs a genetic
algorithm to automatically generate viable jailbreak prompts derived
from existing ones. Qi et al. (2024) propose finetuning the LLM with a
few adversarial training samples to bypass its safeguards. Likewise, Hong
et al. (2024b) point out the restricted diversity of test cases in current
red teaming reinforcement learning, indicating that finetuned models
tend to produce a narrow range of successful test cases once they have
been discovered. To tackle this issue, Hong et al. (2024b) incorporate
novelty rewards and entropy bonuses into the optimization objective, to
steer the LLM towards producing a wider variety of harmful responses.

Instruction-based jailbreak. Most safety alignment methodolo-
gies concentrate on the natural language perspective, neglecting the
influence of non-natural approaches. Yuan et al. (2024) introduce Ci-
pherChat to encode the attack directives into user-defined ciphers, the
regulations of which are explained in the system prompt. Subsequently,
the LLM would generate encrypted context containing unsafe infor-
mation due to the absence of protective alignment on that linguistic
domain. Nonetheless, since it specifically delineates a unique language,
the model must possess the capability to comprehend and utilize the
cipher. Consequently, it may be inappropriate for a relatively small
model like Llama2-7B. Carlini et al. (2023) focus on the alignment pro-
cess of LLMs, commonly perceived as a security measure. The research
illustrates the capacity to compromise current safeguards by producing
adversarial inputs designed for alignment training. Zhao et al. (2024b)
examine the token distributions of secure LLMs compared to their
jailbroken counterparts, emphasizing that the distribution shift takes
place in the initial tokens generated rather than in the later ones. Based
on this, this study introduces a novel attack vector by restructuring
adversarial decoding itself. Anil et al. (2024) investigate a category
of straightforward long-context attacks on LLMs by prompting with
numerous examples of undesirable behavior.
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LLM-assisted Jailbreak. Currently, the black-box attack primar-
ily employs supplementary LLM to enhance the initial prompt, which
includes adversarial targets like bomb-making requests. PAIR (Chao
et al., 2023) produce semantic jailbreaks utilizing solely black-box access
to a large language model via several queries. The attacker can system-
atically interrogate the target LLM to refine and optimize a candidate
jailbreak. PromptAttack (Xu et al., 2024c) employ adversarial instruc-
tion rewriting techniques to rehearse the initial attack target and to
implement heuristic guidance that encourages the LLM to modify the
adversarial instructions. Equivalently, Ding et al. (2023) apply various
techniques for prompt rewriting, e.g., adjusting grammar and altering
writing style, rephrasing the attack instructions, and incorporating
oversight from LLM to guarantee the consistency of the semantics fol-
lowing modification. Then, the rewritten instructions are strategically
integrated into three structured scenarios to prompt the LLM to fill in
the blank space. AgentSimith (Gu et al., 2024) identifies a contagious
jailbreak, wherein an adversary may compromise a single agent inside a
multi-agent system, possibly resulting in the exponential infection of
all agents and the emergence of hazardous behaviors. PAP (Zeng et al.,
2024a) examines the vulnerability of LLMs to natural and human-like
communication in the context of persuasion.

Jailbreak Defense. Robey et al. (2023) introduce SmoothLLM by
utilizing random permutation techniques multiple times to eradicate
the detrimental suffix. Thereafter, the outcome of each permutation
would be analyzed independently by the LLM, with the final responses
established by majority vote. Dai et al. (2024a) present Safe RLHF
to disentangle human preferences and mitigate crowd workers’ uncer-
tainty regarding the tension. By partitioning the optimization target
into reward and cost components, Safe RLHF mitigates the influence
of human biases about helpfulness and harmlessness during data an-
notation, resulting in a more secure aligned LLM. Conversely, Self-
reminder (Xie et al., 2023) and In-context Defense (Wei et al., 2023c)
are merely founded on manually constructed commands. Zhang et al.
(2024c) propose PARDEN to instruct the LLM to reiterate its own
outputs against jailbreaks. Liu et al. (2024h) introduce the Information
Bottleneck Protector (IBProtector), which selectively compresses and



4.2. Watermarking 177

modifies prompts. The IBProtector can retain only critical information
to ensure that the target LLMs provide the anticipated response. Zeng
et al. (2024b) propose AutoDefense to process the LLM’s generated
contents by Multi-Agent system, in order to avert the direct genera-
tion of unsafe information by the LLM. Jailbreak prompts are seen
as out-of-distribution samples that diverge from the distribution to
which the LLM is aligned; hence, Liu et al. (2024c) propose Adversarial
Tuning to enhance the LLM’s defensive mechanisms. This approach
involves refining semantic-level adversarial prompts to enhance the
model’s robustness.

Further Discussion. To further reveal the LLM’s vulnerabilities,
systematic evaluation of the multi-modal attack scenario is valuable for
exploration. This allows us to further explore the psychological proper-
ties of LLMs for their safety deployment with inputs and outputs data
from different models, like image and speech. In addition, it is difficult
to ensure model security across different languages. Addressing these
challenges can guarantee trustworthiness when interacting with the LLM
in multilingual contexts. To defend against these attacks, strengthening
alignment techniques with ethical standards and social norms is critical
to guaranteeing the LLMs’ safety deployment. The enhanced alignment
can help the LLM identify potential harmful instructions that align
better with human preference.

4.2 Watermarking

In recent years, foundation models (FMs) have achieved breakthrough
advances in text (Brown, 2020) and image generation (Rombach et
al., 2022). However, FMs carry risks of malicious exploitation, such as
generating fake news and plagiarized content. This poses a significant
challenge to their wider adoption: how to detect whether text or images
are FM-generated. Watermarking has emerged as a promising technique
to address this detection challenge (Liu et al., 2024a; Zhao et al., 2024a).
Moreover, since training foundation models requires substantial compu-
tational resources, their weights represent valuable intellectual property.
Watermarking the models themselves can serve as a means of model
provenance to protect the rights of model creators (Zhao et al., 2023c).
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In this section, we review watermarking techniques for foundation mod-
els, analyze key technical challenges in current approaches, and discuss
future research directions. In Figure 4.3, we present an illustration of
watermarking on foundation model generated content or FM.

Fine-tuning
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Figure 4.3: Illustration of watermarking on foundation model generated (FM-
Generated) content or FM.

Problem Setting. Detecting AI-generated content and safeguard-
ing model intellectual property are the two main functions of watermark-
ing in foundation models. For text, watermarks W are incorporated into
text sequences SW with secure parameters KD, guaranteeing robust re-
coverability and semantic integrity even in hostile environments. Binary
or multi-bit watermarks are incorporated into generated images IW

while preserving image quality and extractability. Regarding safeguard-
ing intellectual property, identifiers are embedded into model parameters
or outputs through model watermarking, making them impervious to
changes such as distillation or fine-tuning. Watermarking should bal-
ance fidelity, robustness, capacity, security, and efficiency (Uchida et al.,
2017). The watermark’s robustness ensures that it can resist different
removal attacks, while fidelity ensures that the embedding procedure
maintains the host object’s quality. Security requires strong safeguards
to preserve the watermark key, efficiency prioritizes computationally
efficient embedding and detection processes, and capacity refers to the
system’s ability to embed enough information.

Watermarking LLM-Generated Text. Watermarking text gen-
erated by LLMs refers to hiding identifiers in the text, safeguarding
integrity and ownership while maintaining semantics and readability,
which means the identifiers can be detected by a certain method, and
the quality of the text is preserved. This technique can be divided into
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three categories following their integrated stage of the generation pro-
cess (Liu et al., 2024a): embedding watermarks during logit generation,
during token sampling, and during the training of the language model.
Logits-based approaches adjust the probability distribution to priori-
tize particular token sets based on the model vocabulary. For instance,
Kirchenbauer et al. (2023) randomly selects a collection of “green” to-
kens before the process of logit generation and softly promotes their
usage frequency during logit sampling. The watermarked text can be
effectively detected via z-score analysis, a statistical score representing
how far a data point deviates from the mean of a dataset. Unigram
(Zhao et al., 2023b) builds upon Kirchenbauer et al. (2023) employing
a streamlined fixed grouping technique. This method provides shown
resilience against text modification and paraphrasing, which can further
guarantee better generation quality and precise watermark identification
than Kirchenbauer et al. (2023). Watermarks during token sampling
often mean directing token selection through pseudo-random sequences.
Aaronson and Kirchner (2022) incorporate a detectable signal into the
produced text to guarantee robustness against token-level modifications.

Likewise, SemStamp (Hou et al., 2023) first defines and partitions
the semantic space in the sentence level with locality-sensitive hashing
(LSH), and then, generates sentences with multiple times until the sam-
pled sentence is assigned to one partition. Training-based watermarking
integrates watermarks directly into the parameters of the model. For
example, CoProtector (Sun et al., 2022b) utilizes data poisoning meth-
ods, meaning the training dataset has a part of poisoned data. After
the training process, a watermark can then be achieved at the parame-
ter level. CoProtector is designed to safeguard open-source code from
unwanted training exploitation. Hufu (Xu et al., 2024a) employs input
format triggers that leverage the transformer’s permutation property
to include watermarks in the resulting content. Furthermore, Gu et al.
(2023) examines the learnability of watermarks in language models,
assessing the capability of LLMs to be trained for the direct genera-
tion of watermarked text, which carries substantial consequences for
the practical use of watermarks. These methodologies are especially
appropriate for open-source models, as they inhibit the straightforward
elimination of watermarks during post-generation procedures.
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Watermarking DM-Generated Image. Similar to watermark-
ing LLM-generated text, watermarking DM-generated images refers
to embedding watermarks into images produced by Diffusion Models
(DMs). To enable invisible watermarks in generated images for future
detection and responsible deployment, Fernandez et al. (2023) fine-tunes
the latent decoder of the latent diffusion models (LDMs) conditioned on
given watermarks. Then, they train a watermark extractor to retrieve
watermarks from generated images. More importantly, this fine-tuning
method doesn’t affect the diffusion process and requires no architectural
changes to embed watermarks in all the images LDMs generate. Differ-
ent from Fernandez et al. (2023), which needs additional fine-tuning,
Tree-Ring Watermarking (Wen et al., 2023) embed watermarks into
the initial noise vector used during the sampling process, leveraging
the Fourier space to ensure robustness against various transformations,
including crops, flips, and rotations. The embedded watermarks can be
retrieved from the initial noise vector via the reverse diffusion process.

Zhao et al. (2023e) proposes different strategies for two types of
DM, i.e., unconditional/class-conditional DMs and text-to-image DMs.
For unconditional/quasi-conditional DM, Zhao et al. (2023e) embeds
watermarks when training the model from scratch. This is because the
model size of this type of DM is generally small and lacks external control,
making it difficult to add watermarks through other methods. Regarding
text-to-image DMs, they embed watermarks through trigger prompts
and associated watermark images. Specifically, Zhao et al. (2023e)
fine-tunes the pretrained text-to-image DM to establish a relationship
between a rare identifier (e.g., “[V]”) and a predefined watermark image
(e.g., a QR code). Besides focusing on detecting synthetic content,
WaDiff (Min et al., 2024) integrates user-specific watermarks into the
diffusion model’s generation process. WaDiff allows each generated
image to carry unique, imperceptible information that can be extracted
to identify the user responsible for its creation.

Watermarking Foundation Model. Foundation models need
substantial computer resources for training and constitute valuable
intellectual property (IP), necessitating their protection against theft.
Watermarking foundational models provide strong IP protection against
threats like model extraction and unauthorized utilization, primarily
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categorized into two types: watermarking for distillation and fine-tuning.
Watermarking against distillation involves integrating distinctive, iden-
tifiable patterns into a model’s outputs to guarantee that distilled
models preserve the watermark for identification purposes. GINSEW
(Zhao et al., 2023c) integrates covert signals into decoding probabilities
throughout the text production process. This method guarantees that
the watermark endures despite adversarial assaults, such as synonym
randomization, and stays imperceptible in the produced text. During de-
ployment, suspicious models can be recognized by determining whether
their outputs contain secret messages, suggesting they were derived from
proprietary models. GINSEW demonstrates exceptional robustness to
perturbations such as synonym randomization, rendering it notably
resilient. Fine-tuning may also be exploited to conceal the origins of
illegitimate models.

In response, watermarking techniques to mitigate fine-tuning have
been established. Instructional Fingerprinting (Xu et al., 2024b) inte-
grates a confidential private key as an instruction backdoor, eliciting the
model to produce designated output upon invocation of the key. This
technique guarantees the preservation of the fingerprint through metic-
ulous adjustments while staying undetectable during normal usage. Fur-
thermore, HuRef (Zeng et al., 2023) found that LLM parameters demon-
strate directional stability after convergence following pre-training, with
parameters preserving their orientation during subsequent fine-tuning
phases. Consequent to this discovery, they created a systematic frame-
work for model identification, delineating three distinctive invariants.
Empirical evaluations on multiple LLM validate the robustness of this
method.

Further Discussion. Despite significant advances in watermark-
ing techniques for both foundation model-generated content and the
models themselves, several major challenges remain. Generally, it is
difficult to achieve a watermarking strategy that optimally balances
fidelity, robustness, capacity, security, and efficiency simultaneously. For
watermarking LLM-generated text, a critical challenge lies in balancing
watermark strength with text quality. The embedded watermarks must
endure numerous potential assaults, including paraphrase and synonym
substitution. Moreover, the absence of standardized watermarking and
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detection protocols in the community results in watermark detection
being effective solely for particular LLMs. In the field of watermarking
DM-generated images, resilience to adversarial attacks is especially
vital. The watermarking technique must include prevalent image alter-
ations, like compression and cropping. Due to the unpredictable nature
of potential attacks, creating a watermarking method that can with-
stand all conceivable attack vectors presents a considerable problem,
necessitating additional research. The mathematical foundations under-
lying watermarking strategies for foundation models also require further
improvement. Furthermore, due to the extensive scale of foundation
model parameters, embedding watermarks via fine-tuning methods is
excessively costly. This necessitates effective watermarking solutions ca-
pable of withstanding unforeseen attacks while maintaining computing
feasibility.

4.3 Hallucination

The emergence of LLMs has revolutionized the field of natural language
processing (NLP), enabling significant advancements in tasks such as
text generation, comprehension, and reasoning. These models, which
are trained on extensive datasets, have demonstrated an impressive
ability to produce coherent and contextually relevant text. However,
one of the critical challenges associated with LLMs is the phenomenon
of hallucination—instances where the model generates information
that is plausible-sounding but factually incorrect. Hallucinations can
manifest in various forms, including the generation of fictitious facts,
misattributed quotes, or entirely fabricated narratives. This issue raises
concerns about the reliability of LLMs, particularly in applications where
accuracy is essential, such as legal documentation, medical advice, and
educational content.

As the field has progressed, the development of multimodal large
language models (MLLMs) has introduced an additional layer of com-
plexity. MLLMs integrate both textual and visual data, allowing them
to perform tasks that require an understanding of the interplay between
language and images. For example, MLLMs can generate descriptive
captions for images or answer questions based on visual content. How-
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ever, this integration also amplifies the potential for hallucinations, as
the model must ensure that the generated text accurately reflects the
visual information it is associated with. MLLMs can produce hallucina-
tions that stem from cross-modal inconsistencies, where the text does
not align with the visual content, leading to misleading or incorrect
outputs.

The necessity of addressing hallucinations in both LLMs and MLLMs
cannot be overstated. As these models are increasingly deployed in real-
world applications, the implications of generating inaccurate or mislead-
ing information can be profound. In critical domains such as healthcare,
finance, and security, hallucinations can lead to significant consequences,
including misdiagnoses, financial losses, or compromised safety. Fur-
thermore, the trustworthiness of AI systems hinges on their ability to
provide accurate and reliable information. Therefore, understanding the
mechanisms behind hallucinations and developing strategies to mitigate
them is essential for ensuring the responsible deployment of LLMs and
MLLMs. Ongoing research in this area is crucial to enhance the robust-
ness of these models and to foster greater confidence in their use across
various applications.

Problem Setting. Despite the impressive capabilities of LLMs,
they continue to encounter various issues in practical applications, with
hallucination being one of the most critical. The term “hallucination”
has been widely used in the NLP community prior to the emergence
of LLMs, typically referring to the generation of nonsensical content
or outputs that lack fidelity to the provided source material (Ji et
al., 2023). However, we argue that the definition of hallucination has
expanded significantly due to the versatility of LLMs. In this context,
hallucinations in LLMs can be categorized into three main types (see
Figure 4.4):

• Input-conflicting hallucination: Occurs when LLMs generate
content that deviates from the source input provided by users.

• Context-conflicting hallucination: Arises when LLMs produce
content that contradicts previously generated information, leading
to inconsistencies within the same output.
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Figure 4.4: Examples of hallucinations in LLM and MLLM.

• Fact-conflicting hallucination: Involves the generation of con-
tent that is not aligned with established world knowledge.

In the realm of MLLMs, hallucinations present unique challenges
that stem from discrepancies between the generated text and the as-
sociated visual content. This indicates that existing research on hallu-
cinations in LLMs may not fully address the distinct issues posed by
multimodal models, highlighting the need for dedicated studies focused
on hallucinations specific to MLLMs.

Hallucinations in MLLMs often arise from cross-modal inconsisten-
cies, where the generated text fails to accurately represent the visual
content it is intended to describe (Wang et al., 2023c). Much of the
current research has concentrated on object hallucinations, which are
critical in both computer vision and multimodal applications. Two
prevalent types of failures include the omission of objects that should
be visible in the scene and the erroneous inclusion of objects that are
not present in the image or misrepresentation of their characteristics.
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Object hallucinations in MLLMs can be categorized into three types:

• Object Category: MLLMs may incorrectly identify nonexistent
object categories or misclassify objects within an image.

• Object Attribute: While MLLMs may accurately identify object
categories, they can misdescribe the attributes of these objects,
including color, shape, or action.

• Object Relation: MLLMs might correctly identify objects and
their attributes but fail to accurately describe the relationships
among them, such as human-object interactions or spatial arrange-
ments.

In summary, understanding and addressing hallucinations in both LLMs
and MLLMs is crucial for improving the reliability and accuracy of
these models in practical applications.

Hallucination in LLMs. Recent research developments have made
major contributions to understanding and minimizing hallucinations in
LLMs. These papers examine the life cycle of LLMs. The LLM life cycle
consists of four main phases. The first step is pre-training, in which
the model collects information from a large dataset and encodes it in
its parameters. Subsequently, supervised fine-tuning (SFT) allows the
model to develop effective user interface abilities. The model is then
refined using reinforcement learning from human feedback (RLHF),
which aligns its responses with human preferences. The inference step
produces the final result.

Zhang et al. (2023g) identify four main origins of hallucinations
based on the life cycle. Imperfections in pre-training data might cause
gaps in important knowledge or the acquisition of inaccurate informa-
tion in LLMs, leading to hallucinations (Dziri et al., 2022). Second,
throughout the SFT process, there is a possibility for hallucinations to
be accidentally induced when LLMs are expected to reply to queries
that exceed their knowledge boundaries (Achiam et al., 2023). A faulty
alignment method might mislead LLMs and cause hallucinations. The
generating approach used during the inference step has possible dan-
gers. Hallucinations may be triggered by accumulating initial mistakes
(Zhang et al., 2023c) and random sampling (Lee et al., 2022).
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Determining the underlying causes of hallucinations facilitates the
development of effective treatment strategies. Various approaches have
recently been devised at many levels to mitigate the issue of hallucina-
tions. A systematic approach to reducing inaccuracies and biases in the
corpus starts with the careful identification and selection of high-quality
pre-training data from credible sources. The emergence of GPT-2 (Rad-
ford et al., 2019) has underscored the need to collect internet data
with meticulous curation by human experts. The ongoing expansion of
pre-training corpora makes the automation of selection and filtering
processes more feasible. In Penedo et al. (2023), a pre-training dataset
is improved by filtering, rule-based optimization, and deduplication of
existing web datasets, resulting in higher model performance. More-
over, Li et al. (2023b) demonstrate that filtering synthetic data may
provide smaller models with comparable capabilities to larger models,
underscoring the significance and effectiveness of optimizing pre-training
datasets.

During the SFT phase, LLMs often respond to all queries without
determining if they surpass their knowledge bounds, which might lead
to hallucinations. Integrating honest samples into the SFT dataset is a
possible solution (Sun et al., 2024). This technique has disadvantages,
such as poor out-of-distribution generalization and a mismatch between
human knowledge and huge language models. Schulman (2023) suggests
a solution for this problem using RLHF. The idea focuses on creating
a different reward function. Receiving these benefits motivates LLMs
to critically analyze assumptions, voice doubt, and admit their short-
comings. This technique allows LLMs to explore knowledge boundaries
independently, improving out-of-distribution generalization capabilities
and minimizing the need for substantial human annotation of LLM
knowledge limitations.

Mitigating hallucinations during the inference stage is less expen-
sive and easier to regulate than the previously stated training-phase
techniques, leading to more concentrated research efforts. Decoding
techniques are critical in the inference process since they have a major
impact on the quality of the created material. Decoding techniques are
the procedures used to choose tokens from the probability distribution
generated by the model. Optimizing decoding algorithms improves the
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model’s output’s accuracy and consistency in a plug-and-play way. For
example, Lee et al. (2022) shows that nucleus sampling is less successful
than greedy decoding in terms of factuality due to the randomness
introduced by nucleus sampling to increase variety. They developed a
decoding algorithm dubbed factual-nucleus sampling. It aims to balance
variety and factuality better by combining the benefits of top-p and
greedy decoding techniques.

Furthermore, Burns et al. (2022) demonstrate that the activation
space of LLMs includes interpretable structures connected to factual-
ity. Based on this idea, Li et al. (2024b) propose the Inference-Time
Intervention (ITI) approach. This method initially determines a small
number of attention heads with good linear probing accuracy for fac-
tuality. During the inference phase, ITI modifies activations based on
factual directions. This intervention is carried out repeatedly until the
whole solution is obtained. This technique helps LLMs to provide more
factually correct replies.

Similarly, Chuang et al. (2023) examine how to increase factuality
in LLM decoding by evaluating the encoding of factual knowledge
inside transformer LLMs. Earlier layers collect lower-level features,
whereas later layers include more semantic information. As a result,
DoLa is designed as an approach that uses contrastive decoding to
lessen hallucinations. DoLa enhances the factual accuracy of LLMs
while reducing hallucinations by selecting and comparing logits from
different levels and highlighting information from higher layers.

RAG (retrieval-augmented generation) is one strategy for decreasing
hallucinations during inference. RAG improves LLMs by adding current
information or relevant evidence from external knowledge bases or
instruments during inference, reducing hallucinations caused by LLMs’
intrinsic limitations (Ren et al., 2023). REPLUG (Shi et al., 2023)
uses a customizable retrieval model to augment current LLMs during
the creation phase, enhancing accuracy and reliability. In the post-
processing phase, one typical method is to use an auxiliary fixer to
correct hallucinations. One example is RARR (Gao et al., 2022b), which
tells an LLM to produce queries from many viewpoints on the material
that requires correction. The system uses search engines to gather
relevant information, which the LLM-based fixer uses to make the
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appropriate changes. Similarly, the Verify-then-Edit algorithm (Zhao
et al., 2023a) tries to increase the factual accuracy of forecasts by
improving reasoning chains utilizing external information from sites
such as Wikipedia. Although retrieval-augmented LLMs aim to reduce
hallucinations in LLMs, they may nevertheless produce them (Barnett
et al., 2024).

Hallucination in MLLMs. Recent developments in MLLMs have
led to the introduction of various techniques aimed at minimizing
hallucinations through fine-tuning strategies. One notable method is
LRV-Instruction (Liu et al., 2024d), which addresses the shortcom-
ings of existing instruction-tuning datasets that primarily consist of
positive samples. This bias often results in models defaulting to af-
firmative responses, leading to hallucinations. To counter this issue,
LRV-Instruction incorporates both positive and negative instructions,
categorized into three types: manipulating nonexistent objects, altering
attributes of existing objects, and modifying the knowledge conveyed
in instructions. This comprehensive approach enhances the robustness
of visual instruction tuning by ensuring that models learn to navigate a
broader range of scenarios.

Similarly, HalluciDoctor (Yu et al., 2024) refines the instruction-
tuning dataset by establishing a hallucination detection pipeline that
employs consistency checks across multiple MLLMs to identify and
eliminate hallucinated content. Additionally, it utilizes a counterfactual
visual instruction generation strategy to balance the dataset, effectively
reducing the occurrence of hallucinations. Another significant contribu-
tion is EOS Decision (Yue et al., 2024), which focuses on optimizing
the end-of-sequence decision-making process. This method posits that
hallucinations often arise when models generate details beyond their
perceptual limits, particularly concerning objects mentioned later in
generated descriptions. By enhancing the EOS decision-making pro-
cess and implementing a data filtering strategy to remove detrimental
training data, this approach aims to ensure that models can conclude
sequences effectively without generating misleading information.

On the other hand, several methods aim to mitigate hallucinations
without requiring additional training, focusing instead on optimizing
the decoding process. HALC (Chen et al., 2024d) emphasizes the critical
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importance of selecting optimal visual contexts during the decoding of
specific tokens. The research demonstrates that utilizing the best visual
contexts can eliminate over 84.5% of hallucinations, underscoring the
significance of grounding generated text in accurate visual information.
Visual Contrastive Decoding (VCD) (Leng et al., 2024) further seeks
to reduce statistical biases and language priors during the decoding
phase by contrasting output distributions from original and distorted
visual inputs. This method aims to recalibrate the decoding probability
distribution, ensuring that the model’s responses are more aligned
with the actual visual context. Additionally, OPEAR (Huang et al.,
2024b) introduces a novel decoding method that incorporates an Over-
trust Penalty and a Retrospection-Allocation strategy. This approach
addresses the tendency of MLLMs to over-rely on a limited number
of summary tokens, which can lead to hallucinations by neglecting
relevant visual tokens. By implementing a penalty term during beam-
search decoding and employing a rollback strategy to reassess the
relevance of previously generated outputs, OPEAR effectively adjusts
token selection to minimize hallucinations. Collectively, these methods
showcase the potential for optimizing MLLMs through enhanced training
and decoding techniques, ultimately improving their reliability and
performance in real-world applications.

Further Discussion. Even though a lot of work has been done to
understand and treat the hallucinatory issues in LLMs and MLLMs,
there are still a lot of issues that need to be addressed. Because they
struggle to identify the boundaries of their expertise, LLMs often make
untrue assertions with assurance without realizing it. Numerous re-
search have examined this subject, identifying confusing responses using
a range of methodologies. For instance, assessing the likelihood of cor-
rect responses in multiple-choice scenarios (Kadavath et al., 2022) or
examining how LLMs respond differently to the same question in various
formulations (Zhao et al., 2023d). However, it has been shown that many
of the present detection methods have generalizability problems and are
still not sufficiently reliable (Levinstein and Herrmann, 2024). Therefore,
whether we can effectively explore the internal knowledge boundaries of
LLMs remains open and requires further in-depth research.
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Additionally, much of the present research on LLM hallucinations
is in English, despite our desire for multilingual LLMs. Multilingual
LLMs often face various challenges, particularly when translating in
low-resource languages, according to a study on hallucination issues
(Guerreiro et al., 2023). As a result, research on lowering the halluci-
natory phenomena in multilingual LLMs with respect to low-resource
languages is particularly crucial.

Compared to unimodal scenarios, multimodal scenarios in MLLMs
provide more complex hallucination problems. Evaluations and studies
have shown that current MLLMs are prone to generating responses
that are inconsistent with the images presented, including objects with
incorrect sorts and characteristics, entities that do not exist, and in-
correct semantic correlations (Liu et al., 2024e). This problem arises
because current MLLMs inherit the hallucination issues of LLMs, but
due to insufficient multimodal alignment, they display more severe
hallucinations while addressing multimodal tasks. Furthermore, when
several images are shown, MLLMs may misinterpret or omit parts of the
visual content and fail to identify the temporal or logical connections
between them. Given that existing studies cannot accurately detect
and assess hallucinations in multimodal contexts, further research is
necessary to identify, understand, and reduce multimodal hallucinations.
Additionally, some research has expanded LLMs beyond images to other
modalities, including audio (Wu et al., 2023) and video (Maaz et al.,
2023). Examining hallucination issues in these new contexts is equally
important and valuable.

4.4 Causal Learning and Reasoning

What are the fundamental properties of reasoning ability that are
expected to occur in a trustworthy foundation model? This is still
an open question. However, one partial answer might be the deep
association with the mechanism behind the real world. Although it is
debatable whether current foundation models are capable of directly
understanding and utilizing causality during their reasoning process, a
lot of effort has been made in recent years.
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Problem Definition. The meaning of causality has different flavors
in different literature. As illustrated in Figure 4.5, the intersection of the
Foundation Models with three types of tasks are considered here. The
common ground is to understand some realistic mechanism behind real
world. Causal Discovery is about the structure identification among a
set of variables. Given a set of random variables X = {X1, X2, · · · , Xd},
this task expects to obtain a directed causal graph G where each node
represents one variables and each edge Xi → Xj indicate the data-
generating process of Xj depends on the value of Xi. Causal Effect
Estimation is about the estimation the effect of one treatment variable
on one target variable people are interested. For a binary treatment
T ∈ {0, 1}, with notation Y (0) and Y (1) for the potential outcomes,
this task expect to estimate the effect of T on Y as τ = E

{
Y (1)−Y (0)

}
.

The problem is challenging because only one of Y (0) and Y (1) can be
observed for an individual. Causal Knowledge Reasoning is to properly
retrieve and utilize the causal knowledge learned in Foundation Models
to answer queries from users.
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Figure 4.5: Causal learning and reasoning with foundation models.

LLMs for Causal Discovery. Causal discovery is finding causal
relations among a set of variables. Classic methods take tabular datasets
as input and then output a directed acrylic graph to represent the causal
structure among them. Typical methods rely on statistical analysis on
their samples (Spirtes et al., 2001; Peters et al., 2017b).

One featured advantage of LLMs is the broad knowledge learned
from the pre-training phase. LLMs can utilize its knowledge and serve as
a prior to reducing the search space. In addition to tabular data, most of
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methods in this line also requires meta data like textual description Ti

for each variable Xi. Ban et al. (2023b) design a pipeline to generate a
set of edges with the understanding from LLMs and then construct a set
of ancestral constraints to restrict causal orders. They propose the hard
and soft constraint approaches to integrate constraints. An iterative
approach (Ban et al., 2023a) is also proposed to update constraints with
causal graphs from previous rounds. Vashishtha et al. (2023) find that
empirically LLMs perform better in deciding causal orders than causal
structures. Motivated by this, they combine the LLM-predicted causal
orders as a prior with score-based and constraint-based classic causal
discovery methods. Li et al. (2024c) propose LLM-guided Meta Initial-
ization to integrate knowledge and textual information into score-based
causal discovery pipelines for time series. It specifies the initial causal
graph before optimization and keeps the identifiability of the original
methods. Abdulaal et al. (2023) combine the LLMs’ reasoning over meta-
data and the likelihood feedback from data-driven modeling, where an
LLM updates a hypothesis over causal structures iteratively with its like-
lihood verified from numerical data. Le et al. (2024) combine metadata
and numerical methods in a multi-agent approach, where knowledge
retrieval, reasoning, and tools use are conducted by different models.

Instead of searching for causal structures, some works consider differ-
ent but important aspects relevant to causal discovery. Jiralerspong et al.
(2024) focus on the efficiency during the pair-wise query for causal knowl-
edge from LLMs. They propose a breadth-first search framework that
scales linearly with the number of variables. Jiang et al. (2024a) focus
on the scenario where users have no sufficient knowledge about causal
discovery methods. In this setting, LLMs must understand the users’
queries, use causal tools properly, and interpret results. They enhance
LLMs’ ability by post-training over carefully designed datasets. Liu et al.
(2024b) focus on the representation of unstructured data like text or
images. To extend the scope of traditional causal methods with LLMs,
they design the causal representation assistant framework to provably
identify high-level factors as a Markov Blanket for a target variable.

LLMs for Causal Effect Estimation. Estimating the causal
effect of a treatment T on an interested variable Y is an important
task in statistics and economics. Classical methods include randomized
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controlled experiments and estimation from observation data with
instrumental variables (Peters et al., 2017b; Imbens and Rubin, 2015) .

Lin et al. (2023b) consider the estimation of the causal effect of
linguistic attributes on human responses. For target domains where
data is ready for valid estimation, they established an estimator to
transport causal effects between domains with statistical guarantees
on uncertainty. Vashishtha et al. (2023) propose to use causal orders
provided by LLMs to help treatment effect estimation. They show that
causal order contains less information than the full causal structure but is
easier to acquire and is already sufficient for treatment effect estimation.
They show that causal order is good enough to find a valid backdoor
set. Then, they propose a method to get causal orders from LLMs.
Dhawan et al. (2024) aim to construct intensive estimation for causal
effect from observational text data without costly data collection. They
design a NATURAL family of estimators with built-in LLM conditional
distributions. NATURAL estimators have theoretical guarantees of
consistency if the true distribution can be accessed through the form of
language reports.

Causal Knowledge Reasoning. One important ability of Foun-
dation Models is to properly retrieve and process causal knowledge
learned from data during reasoning processes.

It is important to know whether such ability has been learned by
LLMs. CORR2CAUSE (Jin et al., 2024) finds LLMs are not learned
to infer causal structures based on independence conditions. Kıcıman
et al. (2023) provided preliminary but a wide range of evaluations over
multiple real-world benchmarks under different settings, where LLMs
using textual descriptions show competitive performance with numerical
methods. A more recent benchmark is CausalBench (Zhou et al., 2024b),
a comprehensive benchmark consists of 15 commonly used real-world
datasets with a standardized evaluation process. To provide a more
thorough evaluation of LLMs’ causal reasoning ability, Jin et al. (2023)
proposed a large benchmark with questions covering the three rungs of
the ladder of causation. Zečević et al. (2023) proposed to distinguish the
ability to talk causality from learn causality. They empirically justified
the hypothesis that current LLMs cannot be solely relied on to provide
actual inductive learning, such as causal discovery or causal inference.
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Similar conclusions are also found by Cai et al. (2023) with a novel
experimental setup, where a causal attribution model is used to generate
counterfactual data. Chi et al. (2024b) distinguished two levels of causal
reasoning, where current LLMs can do the shallow one while lacking
the ability of the level-2 causal reasoning.

There are methods proposed to enhance the ability further. Causal-
CoT (Jin et al., 2023) guides models to follow steps summarized from
causal inference tasks. CARE-CA (Ashwani et al., 2024) enhances the
causal understanding with knowledge graphs. G2-Reasoner (Chi et al.,
2024b) is a prompting strategy combined with general knowledge from
an RAG system. The prompt is designed to steer LLMs to conduct
causal reasoning in a goal-driven manner.

Further Discussion. As intensive effort has been put into exploring
causal knowledge utilization and its combination with numerical data,
new trends are also emerging.

Toward learning and reasoning over wild observations. Rigorous
statistical methods are designed for structured data created by human
experts. And it is challenging to apply them to text, images, and
videos in an unsupervised manner (Schölkopf et al., 2021; Locatello
et al., 2019). Liu et al. (2024b) integrate the multi-modal knowledge of
Foundation models to analyze unstructured data and provably identify
representations. Dhawan et al. (2024) build a family of causal effect
estimators over unstructured textual data with the LLMs’ conditional
distributions and provide a theoretical guarantee of consistency. Such
works bring new opportunities for reliable analysis of real-world data.

Toward knowledge query for real-world applications. The rich knowl-
edge of Foundation models can be acquired by existing methods. Recent
works begin to investigate how to utilize those knowledge to downstream
tasks reliably and efficiently. Feder et al. (2024) consider text classifica-
tion tasks and conduct interventions on textual data with the LLMs’
knowledge of causal structure to eliminate the reliance on spurious
features. Jiralerspong et al. (2024) reduce the complexity of knowledge
query with designed method that scales linearly. Jiang et al. (2024a)
alleviate the methods’ requirement on domain knowledge from inputs
and construct a user-friendly pipeline. These work are helpful to make
learned causal knowledge to have realistic influence.
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4.5 Open vs. Proprietary Foundation Model

Trustworthy issues vary significantly between open and proprietary
foundation models. Proprietary models like GPT-4 (Achiam et al.,
2023) and Gemini (Team et al., 2024) often rely on the reputation
of the developing organization and robust deployment infrastructure
to build trust, but their black-box nature can raise concerns about
transparency, biases, and accountability. In contrast, open models like
LLaMA (Touvron et al., 2023) and Falcon (Almazrouei et al., 2023)
foster trust through transparency, allowing users to inspect and modify
their architecture and training data, though they may face challenges
like misuse or resource constraints. While proprietary models emphasize
performance and support, open models prioritize community collabo-
ration and customizability, highlighting the trade-offs between control
and transparency in building trust for different use cases.

Problem Background. Regarding their different proper-
ties (Chang et al., 2024), foundation models can be classified into
two main categories: open and proprietary. Open foundation models are
accessible to the public, enabling users to examine, change, and refine
them as required. Examples encompass LLaMA, Falcon, and Mistral.
Conversely, proprietary models like GPT-4, Gemini, and Claude are
closed-source, offering restricted access to their foundational architec-
ture, training data, and weights. The principal distinctions among these
paradigms pertain to accessibility, control, security, and reliability. Open
models foster transparency, community collaboration, and innovation;
yet, they also pose hazards associated with data leakage, adversarial
attacks, and detrimental fine-tuning. Conversely, proprietary models
emphasize restricted access and protection, however they are plagued
by opacity, possible bias, and constraints on public examination.

Security and Ethical Issues of Open Model. Despite their
advantages in transparency and adaptability (Chang et al., 2024), open
models introduce significant security and ethical risks. First, it can
increase the risks of private data leakage (Balloccu et al., 2024). Due to
their public accessibility, open models present a heightened risk of data
leakage. Malicious entities can obtain sensitive information from these
models, either via direct prompt injections or by scrutinizing training
datasets (Qiang et al., 2024). Research such as Huang et al. (2024a) has
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shown that models trained on extensive internet data may unintention-
ally memorize and reproduce personally identifiable information, trade
secrets, or other proprietary information, resulting in significant privacy
breaches. Moreover, firms utilizing open models may unintentionally
reveal private or confidential information during the fine-tuning process.
This risk is particularly alarming in sectors like healthcare, banking, and
national security, where data secrecy is critical. Second, open models en-
able users to customize them using domain-specific datasets, which may
induce harmful fine-tuning and model misuse (Huang et al., 2024c). This
versatility, however, presents security vulnerabilities, since adversaries
may exploit fine-tuning processes to enhance the model for detrimental
consequences. Malefactors can create misleading chatbots, prejudiced
models, or automated systems proficient at disseminating misinfor-
mation. Moreover, fine-tuning on adversarial datasets can circumvent
safety measures, resulting in the dissemination of hazardous, unlawful,
or unethical content. Recent research indicates that fine-tuning can
compromise safety filters, rendering an open architecture more vulnera-
ble to jailbreak attempts. This creates apprehensions regarding the use
of open models in contexts where ethical protections are essential.

Non-transparency and Bias Concerns on Proprietary Model.
While proprietary models mitigate certain risks associated with open
models, they are not without flaws (Kukreja et al., 2024). A significant
drawback of proprietary models is their lack of openness. Organiza-
tions restrict access to training data, model weights, and fine-tuning
methodologies, complicating the auditing of these models for biases
or possible dangers (Chang et al., 2024). As a result, systemic biases
ingrained in training data continue without external supervision, po-
tentially resulting in unjust or discriminatory outcomes (Hajikhani and
Cole, 2024). This opacity erodes user trust, as stakeholders are unable to
ascertain the fairness and ethical alignment of these models. Moreover,
proprietary models frequently offer restricted elucidations regarding
their decision-making methodologies. The black-box characteristic com-
plicates users’ comprehension of answer generation (Schwartz et al.,
2024), posing significant issues in critical fields including healthcare,
law, and finance. In addition, proprietary models are trained on ex-
tensive datasets, although the compositions of these datasets remain
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undisclosed, prompting questions over biases and fairness. Lack of trans-
parency in data selection precludes the assurance that models are devoid
of racial, gender, or ideological biases. Furthermore, entities governing
these models may possess motivations to tailor responses to business or
political agendas (Kirk et al., 2024), jeopardizing impartiality. Similar to
the open models, proprietary models also suffer from hallucination prob-
lems, wherein the model produces inaccurate or manufactured responses.
Nevertheless, the exclusive character of these models complicates the
mitigation of these difficulties. Users frequently struggle to validate the
rationale behind results or rectify systematic problems.

Further Discussion. Assessing the reliability of foundation models
necessitates a sophisticated strategy that takes into account both open
and proprietary systems (Schryen and Kadura, 2009; Kukreja et al.,
2024). Although open models enhance openness and research accessi-
bility, they also render users vulnerable to security concerns, including
aggressive fine-tuning and data leaking. Proprietary models provide en-
hanced security control but are plagued by concerns regarding bias, lack
of transparency, and susceptibility to convert attacks. A balanced strat-
egy is essential to augment the security of both paradigms: 1) For open
models: The implementation of robust safety mechanisms, including
differential privacy, adversarial training, and access limitations, can de-
crease dangers. Transparent governance frameworks, ethical refinement,
and community supervision can enhance accountability; 2) For propri-
etary models: Enhanced openness via external audits, bias assessments,
and user accountability measures can augment trustworthiness.

Organizations ought to investigate methods for elucidating model
decisions and mitigating biases. Moreover, hybrid models—where pro-
prietary frameworks deliver structured safety protocols while permitting
restricted open access for research and auditing—could present a com-
promise. Promoting interdisciplinary collaboration among AI academics,
policymakers, and industry stakeholders is crucial for cultivating a more
reliable AI ecosystem. Ultimately, the responsible deployment of foun-
dation models necessitates ongoing assessment, ethical protections, and
a dedication to transparency. By mitigating vulnerabilities in both
open-source and proprietary models, we can establish a more secure
and dependable AI environment that emphasizes justice, security, and
ethical principles.



5
Conclusion

In this monograph, we investigate the foundation and trends of trust-
worthy machine learning from the perspective of data to models. In
trustworthy data-centric learning, we discuss robust learning to different
data properties by considering label noise, long-tail distributions, out-of-
distribution data, and the worst-case scenario, i.e., adversarial examples.
In trustworthy private and secured learning, we expand the scope to the
model threats of privacy and security, in which we review the foundation
methodology like differential privacy, and explore various attacks (e.g.,
membership inference, model inversion, and data poisoning) and pro-
tection methods (e.g., machine unlearning, non-transfer, and federated
learning). In trustworthy foundation models, we illustrate the recent
critical issues related to the trustworthiness of foundation models, espe-
cially for the safety and intellectual property of generated content (e.g.,
jailbreak prompts and watermarking) and the truthfulness of model
reasoning (e.g., hallucination, casual learning and reasoning), and also
discuss the different concerns on open and proprietary foundation mod-
els. This monograph systematically reviews the problem setting and
directions under each sub-area and discusses the potential challenges and
future directions. We expect this study will provide a thorough overview
and valuable insights in trustworthy machine learning for the community.
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